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Figure 1: Object localization and segmentation example. Left: Image,
Right: Refined mask from SD-HOP

We present a learning approach for localization and segmentation of ob-
jects in an image in a manner that is robust to partial occlusion. Our algo-
rithm, Segmentation and Detection using Higher-Order Potentials (SD-
HOP) produces a bounding box around the full extent of the object and
labels pixels in its interior that belong to the object. This is different
from semantic segmentation, which does not provide information about
the spatial position of labelled pixels inside the object.

A common theme in the literature is to model occlusion geometrically
or appearance-wise, thereby allowing it to contribute to the detection pro-
cess. The former often make simplifying assumptions about occluder and
scene geometry. Our appearance-based approach avoids these assump-
tions and performs better than existing appearance-based approaches due
to the use of higher-order potentials for modelling neighbour influence
and a loss function that targets both localization and segmentation.

SD-HOP discriminatively learns HOG templates for objects and oc-
clusion. Whereas the object templates model the objects of interest, the
occlusion templates provide discriminative support and do not model a
specific occluder. Segmentation is done by considering the response of
patches to these templates, and influence of neighbouring patches through
a CRF with higher-order connections. The training phase requires a set of
images with different occlusions of the object(s) of interest. Each train-
ing sample is (1) over-segmented and (2) annotated with a bounding box
around the full extent of the object and a binary segmentation of the area
inside the box into object vs. non-object pixels. Given these, we train a
structured Support Vector Machine (SVM) that learns the HOG templates
and CRF weights. Object segmentation is done by assigning binary labels
to HOG cells within the bounding box, 1 for visible and 0 for occluded.
Neighbour influence for segmentation can take two forms: (1) pairwise
terms that impose a cost for 4-connected neighbours to have different la-
bels and (2) higher-order potentials that impose a cost for cells to have
a different label than the dominant label in their segment of the image.
These segments are produced separately by an unsupervised segmenta-
tion algorithm.

The label for an object in an image x is represented as y = (p,v,a),
where p is the bounding box, v is a vector of binary variables indicating
the visibility of HOG cells within p and a ∈ [1,A] indexes the discrete
viewpoint. p = (px, py, pσ ) indicates the position of the top left corner
and the level in a scale-space pyramid. The width and height of the box
are fixed per viewpoint as wa and ha HOG cells respectively. Hence v
has wa ·ha elements. Given a labelled image, a sparse joint feature vector
Ψ(x,y) is formed by stacking A vectors, each corresponding to a different
discretized viewpoint. These vectors consist of vectorized HOG features
and visibility labels of cells, count of cells in p that lie outside the image
boundary, statistics of visibility agreement between 4-connected neigh-
bouring cells and cells in the same unsupervised segment, and a constant
bias. All vectors except for the one corresponding to viewpoint a are ze-
roed out.

Learning involves determining linear weights w such that the score

Figure 2: 3D pose estimation. Left to right: Pose estimation with IRLS,
SD-HOP refined segmentation, Pose estimation with OR-IRLS.

wT Ψ(xi,yi) of any ground truth labelled image xi must be smaller than
the score wT Ψ(xi, ŷi) of any other labelling ŷi by the distance between
the two labellings ∆(yi, ŷi) minus the slack variable ξi, where ‖w‖2 and
ξi are minimized. Hence we learn w by solving the following constrained
Quadratic Program
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D2 is a second order curvature constraint on the K + 1 weights for the
higher-order potentials, which forces them to make a concave lower enve-
lope. Training is performed by using the cutting plane training algorithm
of [3], with adaptation for training higher-order potentials as described
in [2]. The loss function between two labels y and ŷ depends on the
amount of overlap between the two bounding boxes and the Hamming
distance between the visibility labellings
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Inference is performed by finding the labelling that minimizes the dot-
product energy: y∗ = argminy wT Ψ(x,y). Due to the linear parametriza-
tion of energy and decomposability of the loss function over the unary
terms, inference is efficient. At every bounding box location in a pyra-
mid, it is performed by a single s− t mincut on a graph constructed as
described in [1] and [2].

We implemented SD-HOP in Matlab, with MVC search and infer-
ence implemented in CUDA since they are massively parallel problems.
Inference on a 640x480 image with 11 scales takes 3s for a single object
with a single viewpoint on our 3.4 GHz CPU and NVIDIA GT-730 GPU.
SD-HOP achieves 13.52% segmentation error and 0.81 area under the
false-positive per image vs. recall curve on average over the challenging
CMU Kitchen Occlusion Dataset. This is a 42.44% decrease in segmen-
tation error and a 16.13% increase in localization performance compared
to the state-of-the-art. Figure 1 shows a sample output on this dataset.

We demonstrate that the segmentation output of SD-HOP can be used
to ignore edges produced by occlusion, thereby making model-based 3D
pose estimation robust to partial occlusion as shown in Figure 2
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