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Abstract

This paper proposes a globally optimal direct least squares (DLS) method for the PnP
problem with Cayley parameterization. First we derive a new optimality condition with-
out Lagrange multipliers, which is independent of any rotation representations. Then,
we show that the new equation can be solved by several types of parameterizations and
among them, Cayley parameterization is the most efficient. According to the experimen-
tal results, the proposed method represented by Cayley parameterization is more than
three times faster than the state-of-the-art method while maintaining equivalent accuracy.

1 Introduction
The perspective-n-point (PnP) problem, which estimates 3D rotation and translation of a cal-
ibrated camera from n pairs of known 3D points and corresponding 2D points on an image,
is a classical problem but still fundamental in the computer vision community. It is well
studied that the PnP problem can be solved by at least three points [3, 4, 7]. If the number
of the points is greater than or equal to four, the PnP problem becomes a nonlinear problem
where the number of the solutions depend on n and the shape of the scene. Such conditions
are varied on different applications, e.g. augmented reality, robot navigation, incremental
structure-from-motion, etc. Therefore, the following features are required for a practical us-
age: efficiency for changing the number of the points, scalability for applications in both
planar and non-planar scenes, and global optimality for avoiding local minima.

Since Lepetit et al. has introduced the first linear complexity method with respect to the
number of the points n, named EPnP [10], many O(n) methods have been proposed in the
literature. EPnP is actually computationally efficient; however, it does not assure optimality
and suffers from convergence to a local minimum especially for n≤ 5 situations [11]. In ad-
dition, different implementations are required for planar and non-planar scenes, respectively.
For ensuring scalability and global optimality, two iterative convex relaxation methods have
been proposed by Schweighofer and Pinz [14] and Hmam and Kim [6], respectively. Their
methods using semi-definite programing (SDP) take more than 100 msec/frame for solv-
ing the PnP problem. Despite the slow computation, the SDP based methods often fail to
converge to global optimum due to the difficulty in controlling the relaxation.

To overcome the computational cost issue, direct least squares (DLS) approach was de-
veloped by Hesch and Roumeliotis [5]. The concept of DLS is to find all stationary points of
the first optimality condition represented as a system of multivariate polynomials. Solving
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World coordinates Calibrated image coordinates

Figure 1: The PnP problem

the polynomial system results in eigenvalue decomposition, which can be computed effi-
ciently using a linear algebra library. Since Cayley parameterization, which is used in the
Hesch’s method, has a singularity for any 180 degree rotations, OPnP [16] and UPnP [8]
adopt a quaternion-based parameterization for avoiding the singularity. However, for effi-
ciency, those two methods require a special implementation to eliminate the sign ambiguity
of quaternion, or 2-fold symmetry [1].

This paper proposes an efficient, scalable, and globally optimal DLS method parameter-
ized by Cayley representation, which has been regarded as a unsuitable parameterization due
to its singularity. First we derive a new optimality condition without Lagrange multipliers.
The number of the solutions to the new equation is not changed for any types of rotational
parameterization. Then, we show that Cayley parameterization is the most compact repre-
sentation and can be used for calculating the optimal solution with avoiding the singularity.
Due to no 2-fold symmetry, the proposed method can be implemented by using Kukelova’s
automatic generator [9] and is more than three times faster than OPnP.

2 Theoretical Background

2.1 PnP Problem

This section briefly describes a mathematical formulation of the PnP problem. Figure 1
shows a concept of the PnP problem.

Letting pi = [xi,yi,zi]
T be an i-th 3D point and mi = [ui,vi,1]T be the corresponding

calibrated image point in homogeneous coordinates, the perspective projection from pi to mi
can be expressed by

mi ∝ Rpi + t, i = 1, . . . ,n, (1)

where ∝ denotes equality up to scale, R ∈ SO(3) and t ∈ R3 are the rotation matrix and the
translation vector from the world coordinates to the camera coordinates, respectively.

The PnP problem aims to find the six unknown parameters, R and t, from known point
correspondences, pi and mi. Although the dimension of Equation (1) is three, one point pair
gives only two constraints due to the scale ambiguity. Therefore, at least three correspon-
dences are required to solve R and t. In the case of n≥ 4, the PnP problem can be formulated
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as a nonlinear optimization

min
R,t

n

∑
i=1

∥∥[mi]× (Rpi + t)
∥∥2

s.t. RT R = I, det(R) = 1

(2)

where [ ]× denotes a matrix representation of the vector cross product. The cost function
in Equation (2) is based on a minimization of algebraic error.

We can express t as a function of R since t is linear and does not have any constraints in
Equation (2). Hence, the PnP problem can be rewritten as

min
R

rT Mr

s.t. RT R = I, det(R) = 1
(3)

where r∈R9 is a vector form of R and M∈R9×9 is a symmetric coefficient matrix computed
from the known parameters, pi and mi. Zheng et al. [17] proposes an efficient method for
calculating M, named vectorization technique. For the derivation details, see Appendix A in
the supplemental material.

2.2 Gröbner basis solver

Not only the PnP problem but also many computer vision problems result in solving a system
of multivariate polynomial equations. One way to solve the polynomial equations is to com-
pute the Gröbner basis, which is a special set of multivariate polynomials so that it has the
same solutions as the original equations and is easy to solve. Gröbner basis method has been
widely known since Stewenius et al. [15] introduced it for solving the two-view geometry.
Early works try to compute Gröbner basis manually. However, it takes a lot of time and is
difficult to assure reliability.

Kukelova et al. [9] proposed an automatic generator, which provides a MATLAB code
for Gröbner basis solvers. The generator analyses the Gröbner basis and the number of
solutions in the finite field, then outputs the code for constructing an elimination template and
an action matrix. The elimination template is a coefficient matrix from the initial equations to
determine which equations are required for the Gröbner basis. The action matrix is extracted
from the elimination template and its eigenvalues are identical to the solutions of the original
polynomial equations. The readers can refer to [2] for more details of Gröbner basis.

Once the code is given, the actual computations are decomposition of the elimination
template by QR or Gaussian elimination and the eigenvalue decomposition of the action
matrix. As the number of the unknowns and the maximum degree become larger, the com-
putation becomes less efficient and unstable because the size of the elimination template and
the action matrix become large. Therefore, the key to the numerical efficiency and stability
is to find a minimal set of parameterization for describing the original problem.
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3 Proposed Method

3.1 New optimality condition without Lagrange multipliers
In this section we formulate a new optimality condition that satisfies Equation (3). Assuming
that R is a general rotation matrix parameterized by nine unknowns, Lagrange function of
the PnP problem can be written as

L(R,S,λ ) =
1
2

rT Mr− 1
2

trace
(
S(RT R− I)

)
−λ (det(R)−1). (4)

Here, λ is a Lagrange multiplier and S∈R3×3 is a symmetric matrix of Lagrange multipliers.
The multiplier 1/2 is merely for convenience. Then, the first-order optimality condition is
given by

∂L
∂R

= mat(Mr)−RS−λR = 0, (5)

∂L
∂S

= RT R− I = 0, (6)

∂L
∂λ

= det(R)−1 = 0, (7)

where mat( ) is a reshaping operator from a 9× 1 vector to a 3× 3 square matrix. From
Equation (5), we have

mat(Mr) = R(S+λ I). (8)

Multiplying RT from the left-hand and the right-hand side, respectively, we have

RT mat(Mr) = S+λ I, (9)

mat(Mr)RT = R(S+λ I)RT . (10)

Since S+ λ I is a symmetric matrix, the left-hand side of Equations (9) and (10) must be
symmetric matrices. Hence, we obtain the following two equations where the Lagrange
multipliers are eliminated:

P = RT mat(Mr)−mat(Mr)T R = 0, (11)

Q = mat(Mr)RT −Rmat(Mr)T = 0. (12)

Equations (11) and (12) are the proposed new optimality condition for the PnP problem.
Let Pj,k and Q j,k be the element of P and Q in the j-th row and k-th column, respectively.
Obviously the diagonal elements are zeros, Pj, j = Q j, j = 0. On the other hand, the non-
diagonal elements are second degree polynomials in R. Due to the symmetry, Pj,k = Pk, j and
Q j,k = Qk, j, we have six polynomials in total:

P1,2 = 0, P1,3 = 0, P2,3 = 0,
Q1,2 = 0, Q1,3 = 0, Q2,3 = 0. (13)

Finally, the solution of the PnP problem can be obtained by solving Equation (13) together
with the constraints for rotation matrix, Equations (6) and (7).
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3.2 Comparison of parameterizations
Although Equation (13) is derived from a general rotation parameterization, any parameter-
ization satisfying Equations (6), (7), and (13) is usable for solving the PnP problem. First
we will discuss about three typical parameterizations that are expressed by polynomial: gen-
eral rotation matrix, quaternion, and Cayley. To compare the parameterizations, we use an
automatic Gröbner basis solver by Kukelova et al. [9]. Then, we will show that Cayley pa-
rameterization is the most compact representation. The readers can find MATLAB code for
using the automatic generator in Appendix B in the supplemental material.

3.2.1 Rotation Matrix

As shown in the previous section, a general rotation matrix is represented by nine unknowns
with seven constraint equations. Intuitively we have 6+7 = 13 equations and the maximum
degree is three. Note that RT R− I is symmetric and det(R) is a cubic equation. However,
we found that the use of the third-order determinant constraint is too complicated to run the
automatic generator since it requires to multiply eighth-order monomials. To overcome this,
we introduced quadratic equations that are equivalent to det(R) = 1 under RT R = I:

ri− r j× rk = 0, (i, j,k) =


(1,2,3)
(2,3,1)
(3,1,2)

(14)

where the subscripts i, j, and k denote the column number of R. Also we added RRT = I
for further reduction of the elimination template. Finally, 6+ 21 = 27 equations are used
for the automatic generator and those equations give 40 solutions as with OPnP. This fact
implies that the solution space is identical each other. Although this is one of the simplest
representation without singularity nor p-fold symmetry, the size of the elimination template,
1936×1976, is the largest among the three parameterizations.

3.2.2 Quaternion

Letting q = [a,b,c,d]T be a unit quaternion, the rotation matrix is given by

R =

a2 +b2− c2−d2 2(bc−ad) 2(bd +ac)
2(bc+ad) a2−b2 + c2−d2 2(cd−ab)
2(bd−ac) 2(cd +ab) a2−b2− c2 +d2

 . (15)

Equations (6) and (7) are replaced by the following equation

‖q‖2−1 = 0. (16)

Therefore, the total number of equations is 6+1 = 7 and the maximum degree is four.
Quaternion does not have a singularity but sign ambiguity, i.e., q and −q give the same

rotation matrix. This is called 2-fold symmetry [8, 16]. For this reason, the number of solu-
tions is 80, which is doubled for the general rotation matrix representation. The elimination
template is expected to be smaller than 630×710 if we introduce Ask et al.’s technique [1]
for eliminating the 2-fold symmetry. However, the implementation is not easy because the
generator is not open publicly, unlike Kukelova’s automatic generator. Therefore, only the
result from the automatic generator is discussed in this paper.
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3.2.3 Cayley parameterization

This is equivalent to replace the first element a in q by 1. The sign ambiguity is eliminated,
therefore, the number of unknowns is reduced from four to three. Also, the number of
equations is reduced from seven to six since the unit norm constraint, Equation (16), does
not hold anymore. Instead of ‖q‖2 = 1, normalization is required for expressing a rotation
matrix:

R =
1
s

1+b2− c2−d2 2(bc−d) 2(bd + c)
2(bc+d) 1−b2 + c2−d2 2(cd−b)
2(bd− c) 2(cd +b) 1−b2− c2 +d2

 , (17)

where s = 1+b2 + c2 +d2.
It appears that the fractional term 1/s changes the solution space. However, P and Q

are not affected by any types of normalization. Let us consider a case of P. Substituting
Equation (17) into Equation (11), we have[

1
s

R
]T

mat
(

M
[

1
s

r
])
−mat

(
M
[

1
s

r
])T [1

s
R
]
=

1
s2

(
RT mat(Mr)−mat(Mr)T R

)
=

1
s2 P. (18)

Because of 1/s2 > 0, we have
1
s2 P = P = 0. (19)

Actually the number of the solutions is 40 in spite of Cayley parameterization. This fact
implies that the solution space is the same as that of OPnP. Furthermore, the size of the
elimination template is the smallest, 124×164, among the three representations.

As pointed out by Zheng et al. [16, 17], this parameterization is singular at a = 0, which
occurs at any 180 degree rotations. However, Hesch and Roumeliotis [5] propose an easy
trick to avoid it by applying a random rotation to pi as a preprocessing. This approach has
not been published in a paper but a source code is available on the website1.

3.2.4 Choosing the best parameterization

Table 1 is a comparison of the above three parameterizations with existing methods. The
computational cost and stability highly depend on the size of the elimination template and
the action matrix. Therefore, this paper selects Cayley parameterization for solving the PnP
problem.

One may ask why higher degree of the polynomial by multiplying RT to Equation (8)
does not result in a lager number of possible solutions instead of 40. The derivation of
Equation (13) is equivalent to a manual elimination of the Lagrange multipliers, that is, the
multiplication of RT can be interpreted to be a part of operations to build Gröbner basis of the
PnP problem with the constraints. Even without the constraints like Cayley parameterization,
Equation (13) still holds as proved in Equations (18) and (19). Therefore, the number of the
solutions is not changed.

1http://www-users.cs.umn.edu/~joel/
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Table 1: Comparison of rotation parameterizations
Existing methods Proposed params

DLS [5] OPnP [16] UPnP [8] Rotation Quaternion Cayley
(Cayley) (Non-unit Quat.) (Quaternion) Matrix

# of unknowns 3 4 4 9 4 3
# of equations 3 4 8 27 7 6
max degree 3 3 3 3 4 4
# of solutions 27 40 8 40 80 40

(w/o 2-fold) (w/o 2-fold) (w/ 2-fold)
singularity yes no no no no yes
elim. templ. 120×120* 348×376 141×149 1936×1976 630×710 124×164
action matrix 27×27 40×40 8×8 40×40 80×80 40×40

*Hesch et al. use a Macaulay resultant method instead of Kukelova’s automatic generator.

4 Experiments on Synthetic Data
This section compares the proposed method using Cayley parameterization, referred to as
optDLS, with existing methods, SP+LHM [13], EPnP+GN [10], SDP [14], RPnP [11],
DLS+++ [5], OPnP [16] and UPnP [8]. We had not evaluated Lu et al.’s iterative method,
called LHM [12], since its accuracy is not as good as the other latest methods [8, 16]. All
the methods are MATLAB implementations except for UPnP, a C++ implementation.

We evaluated the above methods in terms of robustness against varying the number of the
points with fixed image noise, robustness against varying image noise with fixed the number
of points, and computational time. In the two robustness tests, two point distributions, planar
and non-planar, and two Cayley parameterizations, degenerate (a = 0) and non-degenerate
(a 6= 0), were configured. Thus, the total number of the test is four for each.

We modified a MATLAB code2 provided by Zheng et al. [16] for evaluating methods for
the PnP problem. We assume a virtual perspective camera with image resolution 640×480
[pixels], focal length 800 [pixels], and principal point at the coordinate (320,240). 3D points
were randomly distributed in the x-, y-, and z-range of [−2,2]× [−2,2]× [4,8] in the camera
coordinates for the non-planar scene and [−2,2]× [−2,2]× [0,0] in the world coordinates
for the planar scene. Those points were projected onto the virtual camera by the ground truth
of Rtrue and ttrue, which were randomly generated. Then, the rotation and translation errors
were measured by

erot = max
k∈{1,2,3}

cos(rT
k rk,true)

−1×180/π [degrees],

etrans = ‖ttrue− t‖/‖t‖×100 [%], (20)

where rk,true and rk are the k-th column of Rtrue and R, respectively. We ran 500 independent
trials for each evaluation on Core-i7 3770 with 16GB RAM. We compared the errors and the
elapsed time by taking median and mean, respectively.

In the implementation of optDLS, we used the one-time random rotation preprocessing
to avoid the Cayley singularity. Also, inspired by ASPnP [17], we replaced rref() with \
in the original code by the automatic generator so that the solver becomes faster.

4.1 Robustness against varying number of points
In this test, the number of the points n were varied from 4 to 20. The image noise was
zero-mean Gaussian noise with fixed deviation σ = 2 [pixels] on the image points. Figure 2

2https://sites.google.com/site/yinqiangzheng/
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EPnP+GN RPnP DLS+++ SDP OPnP UPnP optDLS

Non-Degenerate Cayley Degenerate Cayley

(a) Non-planar point configuration

Non-Degenerate Cayley Degenerate Cayley

SP+LHM RPnP DLS+++ SDP OPnP UPnP optDLS

(b) Planar point configuration

Figure 2: Robustness for varying 4≤ n≤ 20 and fixed image noise σ = 2.0

shows the result of the evaluation. Most of the methods are overlapped in the non-planar
configuration since they give the optimal solution for n ≥ 6 points. DLS+++, which uses a
random rotation preprocessing three times, is not stable for planar scenes. On the contrary,
the accuracy of optDLS is comparable to OPnP for both planar and non-planar configura-
tions. Interestingly, UPnP is slightly worse than optDLS and OPnP. This will be discussed
further in the next experiment.

4.2 Robustness against image noise
Figure 3 shows the result with fixed n= 10 and varying 0.5≤ σ ≤ 5.0 [pixels]. Similar to the
previous experiment, optDLS and OPnP are comparable with each other. However, UPnP
has almost the same accuracy with RPnP, which is worse than that of optDLS and OPnP.
The results from the previous and this experiment imply that UPnP is not a optimal method
but a kind of suboptimal method like RPnP.

4.3 Computational Time
Figure 4 is a plot of computational time with varying 4 ≤ n ≤ 2000 and fixed σ = 2. Note
that the result of SDP is out of the range.

The computational time of optDLS is less than 3 msec for almost all cases and is the
fastest especially for n ≥ 400 points, even though UPnP is a mex function. This result
indicates that optDLS is suitable for realtime applications, such as augmented reality and
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EPnP+GN RPnP DLS+++ SDP OPnP UPnP optDLS

Non-Degenerate Cayley Degenerate Cayley

(a) Non-planar point configuration

SP+LHM RPnP DLS+++ SDP OPnP UPnP optDLS

Non-Degenerate Cayley Degenerate Cayley

(b) Planar point configuration

Figure 3: Robustness for varying 0≤ σ ≤ 5.0 and fixed n = 10.

visual SLAM, where n ≥ 400 is not a rare situation. In addition, faster performance is
expected for optDLS by a C++ implementation.

It is seen that optDLS and OPnP are O(1) methods rather than O(n). Due to the vector-
ization technique by [17], the dominant part is the decomposition of the elimination template
and the action matrix. The reason why optDLS is faster than OPnP is that optDLS does not
require a special implementation for eliminating 2-fold symmetry, which accounts for 75%
of the computational time of OPnP.

5 Conclusion

This paper has presented a globally optimal DLS method for the PnP problem with Cayley
parameterization. The contribution is to derive a new optimality condition without Lagrange
multipliers, which can be applied for any rotational representations. Considering the size
of solvers of several representations, we have found Cayley parameterization is the smallest
one. As shown in the experiment, the proposed method is as accurate as the state-of-the-art
method and the fastest for almost all the cases since it does not require a 2-fold symmetric
elimination.
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EPnP+GN RPnP DLS+++ SDP OPnP UPnP optDLS
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Figure 4: Computational time for varying 4≤ n≤ 2000 and fixed σ = 2.0
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