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Abstract

One of the shortcomings of the existing model-based 3D hand tracking methods is
the fact that they consider a fixed hand model, i.e. one with fixed shape parameters. In
this work we propose an online model-based method that tackles jointly the hand pose
tracking and the hand shape estimation problems. The hand pose is estimated using
a hierarchical particle filter. The hand shape is estimated by fitting the shape model
parameters over the observations in a frame history. The candidate shapes required by
the fitting framework are obtained by optimizing the shape parameters independently in
each frame. Extensive experiments demonstrate that the proposed method tracks the pose
of the hand and estimates its shape parameters accurately, even under heavy noise and
inaccurate shape initialization.

1 Introduction
Tracking articulated objects in 3D is a challenging task with many applications in several
fields such as health care, telepresence, surveillance, and entertainment. 3D hand tracking is
an interesting sub-problem with high complexity due to the high dimensionality of the human
hand and its frequent and often severe self occlusions. Lately, this problem has received a lot
of attention and several works that took advantage of RGB-D sensors have advanced the state
of the art in terms of tracking accuracy and processing time. However, most of the methods,
track a human hand under the assumption that its parameters (e.g., finger lengths, palm
dimensions, e.t.c.) are already known. This is a quite restrictive assumption that limits the
applicability of tracking methods. Hand model inaccuracies will translate to hand tracking
inaccuracies or even failure.

In this work we jointly solve the hand pose tracking and hand shape estimation prob-
lems with a model based approach. The hand shape parameters are unknown but constant
throughout a tracking sequence while the hand pose and articulation parameters constantly
change. The different nature of these two parameter sets call for distinct approaches for esti-
mating them. The hand pose parameters are estimated using the Hierarchical Model Fusion
framework (HMF) [10, 11]. At each frame a shape estimate is obtained by an evolutionary
optimization algorithm (PSO) [7]. The best of these estimates is then selected by a robust fit-
ting framework that evaluates them over a frame history. We found this optimization/fitting
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strategy for the shape estimation to be a good compromise between speed and accuracy. A
joint optimization of the shape parameters over the whole history would probably lead to
more accurate results but is much slower. On the other hand, performing only per-frame
shape optimization is faster but leads to inaccurate and unstable hand shape estimates.

1.1 Related work
Bottom up vs top down approaches: There are mainly two families of methods that
are used for hand tracking i.e. model based (top-down) approaches and appearance based
(bottom-up) approaches. The appearance based approaches rely on image features and a
classifier to find the corresponding pose within a set of predefined hand poses [3, 5, 8, 9, 12,
24, 25]. Model based approaches on the other hand [13, 15, 17, 18, 22] define a parametric
model of the hand and search for the optimal solution in the model’s continuous parameter
space. The optimal solution comes either by local optimization around the estimate for the
previous frame or by filtering. Bottom-up approaches require big training datasets to cap-
ture the large appearance variation that arises due to the highly articulated structure of the
hand. To cope with this issue typically a coarse pose quantization is performed. The advan-
tage of these data-driven approaches is that no hand initialization is required. In contrast,
model based approaches usually perform local optimization and thus require initialization
of the hand pose and shape in the first frame of the sequence. Finally, lately several hybrid
approaches appeared that try to combine the advantages of both categories [16, 20, 21, 26].
Model Based Articulated Pose Tracking: Model based approaches can be categorized as
holistic and part-based. Holistic approaches use a single hand model whereas part-based
approaches decompose the model into parts and track them separately. Then constraints in
the relative position of the parts are typically enforced. In [22], a part-based approach that
uses non-parametric belief propagation to approximate the posterior is presented. In [6], the
authors propose a part-based method for tracking a hand that interacts with an object. Each
part has 6-DOF (position and orientation) for a total of 96-DOF for the whole hand. For
each part, the objective function is defined locally and uses depth information after a skin
color based hand segmentation. Several holistic model based approaches that perform local
optimization around the previous estimate have been recently proposed. In [4] an approach
that captures the motion of two hands interacting with an object is proposed. An iterative
optimization scheme that uses the Levenberg-Marquard algorithm is employed. In [13, 15],
Particle Swarm Optimization (PSO) is applied for single and two-hands tracking while a
custom evolutionary optimization method is proposed in [14] for these two problems. The
above methods assume a known hand shape. Recently, a hierarchical particle filter for hand
tracking has been proposed [11]. In this work we employ this method to track the hand
pose and we extend it to also estimate the user’s hand shape which leads to better tracking
accuracy.
Hand Shape Estimation: Recently, a few approaches that attempt to solve the hand shape
estimation problem have been proposed.In [23], the hand shape is learned from a depth
sequence. However, the problem is treated disjointly from tracking, and shape estimation
requires a calibration sequence. Very recently, an approach that jointly estimates the hand
pose and shape has been proposed [19]. The difference with our approach is that they don’t
split the state into shape and pose parameters but instead estimate, per-frame, the joint pose-
shape state using a PSO optimizer. We claim that the inherent difference between the con-
stant shape parameters and the varying pose parameters favors their splitting into two groups
and the different treatment for each group. We experimentally validate this claim and show
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that the latter strategy leads to superior performance.

1.2 Contribution
In this work we present an on-line method that solves simultaneously the hand tracking and
hand shape estimation problems. The method performs in real time (25− 30fps). For the
pose estimation the Bayesian Hierarchical Model Framework (HMF) is employed [10, 11].
The framework uses six auxiliary models that lie in lower dimensional spaces as proposals
for the 26-DOF main model of the hand. A fast and robust metric measures the discrep-
ancy between the rendered model and the RGB-D observations. The shape parameters are
estimated using a novel approach. In a first step, shape parameters are optimized per frame
using the PSO algorithm. A history of such per-frame estimates are then fed to a robust fitting
framework that estimates the best hand shape parameters within this history of frames.

The method is tested qualitatively using real challenging sequences and quantitatively
using simulated data. As a baseline for the comparison we use the HMF [11] that performs
tracking without shape estimation. The experiments show clear benefit of the proposed ap-
proach in the case where the initial model shape differs from the tracked hand shape. The
proposed method manages to converge early within the sequence to good and stable hand
shape parameter estimates. In summary, the main contributions of this paper are:

• An online and real time method that (a) tracks the 3D position, orientation and full
articulation of the human hand and (b) estimates the hand shape parameters.

• The development of an optimization/fitting method that takes into account a frame
history to estimate the shape parameters of a human hand.

2 Pose & Shape Tracking
Let xt and yt be the pose and shape state at time step t respectively. The method employs
the HMF particle filter variant [11] to track the pose parameters given the hand shape. The
shape estimate at each time step is provided by per-frame shape parameters optimization,
followed by a robust fitting framework. The per-frame optimizer generates possible shape
proposals ypso

t by optimizing the shape parameters at each frame given fixed (i.e., already
estimated) pose parameters. Since the actual shape parameters are constant, the robust fitting
cross-validates the shape proposals over a frame history. The output of the fitting is the best
estimate given the considered history of the shape parameters ȳt that is used in the subsequent
frame by the pose tracker. The steps of the algorithm are shown in Alg. 1. In the following
sections we describe in detail the employed model and the stages of this algorithm.

Algorithm 1 Pose/Shape Tracking
Initialize at t = 0 with the approximate pose and shape x0, y0.
for each frame t do

Update(HMF) the pose given the previous shape estimate ȳt−1 (Sec. 2.2).
Optimize(PSO) the shape to obtain the per-frame shape estimate ypso

t (Sec. 2.3).
Fit the shape params over the shape history to obtain ȳt (Sec. 2.4).

end for
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(a)

2 DOF

1 DOF

Fixed
6 DOF

(b)

Figure 1: The employed 3D hand model: (a) hand geometry, (b) hand kinematics.

2.1 Hand model

The hand model (Fig. 1) is built using two basic geometric primitives: a sphere and a cylin-
der. The shape of the hand yt is parametrized by an 11D vector controlling sphere radii
and cylinder radii and heights. The vector includes the finger lengths (5D), the radii of the
four spheres located on each finger (3 joints and tip resulting in 4D representation since we
consider fixed radii ratios for the corresponding sphere of each finger that take into account
the relative finger widths), and finally the width and height of the palm (2D). This shape
parametrization was chosen since in practice it can model a broad spectrum of hand shape
variations. However, the proposed method does not depend on the particular parametrization
and, thus, it can be straightforwardly replaced by a different one either designed or learned.
The pose of the hand xt is parametrized by a 27D vector. The kinematics of each finger are
modeled using four parameters, two for the base angles and two for the remaining joints.
Bounds on the values of these parameters are set based on anatomical studies [1]. The global
position of the hand is represented by a fixed point on the palm and the global orientation.

2.2 HMF Pose Tracking

In this section we outline the application of the HMF tracking framework [10] to the hand
tracking problem first presented in [11]. The framework updates at each frame t the pose pa-
rameters xt given the estimate of the shape parameters ȳt−1. The HMF uses several auxiliary
models that are able to provide information for the state of the main model which is to be
estimated. Each of the auxiliary models tracks a distinct part of the hand; we use one for the
palm with 6-DOF for its 3D position and orientation and one for each finger with 4-DOF for
the joint angles (Fig. 1(b)). We define the full state xt at a time step t as the concatenation
of the sub-states that correspond to the M auxiliary models and the main model x[0:M]t . By
zt we denote the measurements at time step, t. For notational simplicity in the following
we drop the dependence of measurements on the shape parameters since the latter are held
constant throughout the update.

The framework follows the Bayesian approach for tracking [2]. By x0:t we denote the
state sequence {x0...xt} and accordingly by z1:t the set of all measurements {z1...zt} from
time step 1 to t. The tracking consists of calculating the posterior p(x0:t |z1:t) at every step,
given the measurements up to that step and a prior, p(x0). Using the state decomposition the
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solution is expressed as:

p(x0:t |z1:t) ∝p(x0:t−1|z1:t−1)

∏
i

p(zt |x[i]t)p(x[i]t |Pa(x[i]t)), (1)

where by Pa(x[i]t) we denote the parent nodes of x[i]t . The parent nodes of the main model
are the auxiliary models of the same time step. The parent node of an auxiliary model is
the main model of the previous step. In (1) we make the approximation that the observa-
tion likelihood is proportional to the product of individual model likelihoods p(zt |x[i]t). To
efficiently approximate the posterior given the above state decomposition we use a particle
filter that sequentially updates the sub-states. The algorithm approximates this posterior by
propagating a set of particles. The particles for each node are drawn from the proposal dis-
tribution q(x[i]t |Pa(x[i]t)) which models the sub-state of a node given its parents. Using these
factorizations, the algorithm sequentially updates the sub-states by sampling from the factor
of the proposal that corresponds to the i-th sub-state and subsequently updating the weights
with the i-th factor of the likelihood. The state estimate for each frame x̄t is given by the
weighted average of the main model particles.

The observation likelihood measures the degree of matching between a model pose and
the observations as in [11]. The input of the method is an RGB-D image and a model pose.
The model pose is rendered and is compared with the image which results in a distance D
that takes into account the silhouette and depth match. The likelihood L(x,z) is calculated
as an exponential function of that distance.

2.3 Per-Frame Shape Estimation

At each time step t the particle filter described above maintains a set of N weighted particles
for the main model: {x(n)t , ȳt−1,w

(n)
t }N

n=1. An optimization of the shape parameters using
the PSO algorithm is performed independently for the N pso << N (in this work we used
values for the N pso in the range of 5−10) particles with the higher weights resulting in N pso

updated estimates for the shape parameters paired with the corresponding pose parameters:
{x(n)t ,y(n)t }N pso

n=1 . The likelihood of these pairs is calculated and the shape parameters with
the max-likelihood ypso

t are retained as the current shape estimate. The algorithm steps are
shown in Alg. 2.

Algorithm 2 Per-Frame Shape Optimization

Input: {x(n)t , ȳt−1,w
(n)
t }N

n=1.
Sort the particles in descending order according to their weights.
for each particle n = 1 to N pso do

Optimize(PSO) the shape to obtain: y(n)t .
end for
Select the best shape: ypso

t = argmaxy L([x,y],zt), x, y ∈ {xn
t ,yn

t }N pso

n=1
Output: ypso

t .
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2.4 Robust Shape Fitting
The per-frame shape estimates up to the current frame are processed by a robust fitting frame-
work. The framework stores a history of N f frames along with their corresponding poses
HF = {z f , x̄ f }

N f
f=1, and a history of Ns shape parameters HS = {ypso

s }Ns
s=1. Every shape ys

in history HS is paired with every pose x̄ f in history H f . The likelihood L([x̄ f ,ypso
s ],z f )

of each pair is evaluated and the shape parameters are ranked according to that likelihood.
The per-frame ranks R f (x f ,ys) of each shape parameter set ypso

s are then averaged to obtain
the global rank for the set R(ys). The new estimate for the shape parameters is selected by
choosing the estimate with the best average rank among the history frames. The steps of the
algorithm are displayed in Alg. 3. In order to keep the computational cost reasonable we
impose upper bounds in the number of history frames N f and shape estimates Ns. The values
for these bounds are discussed in the experiments section.

Algorithm 3 Shape Fitting
Initialize HF = /0, HS = /0.
for each frame t do

Add current frame/pose estimate: HF = HF ∪{zt , x̄t}.
Add current PSO shape estimate: HS = HS∪ypso

t .
for each frame/pose z f , x f in HF do

for each shape estimate ys in HS do
Calculate the data likelihood: L([x f ,ys],z f ).

end for
Calculate the frame ranking of each shape estimate: R f (x f ,ys)

end for
Calculate the average rank of each shape estimate: R(ys) = 〈{R f (x f ,ys)}

N f
f=1〉

Output: ȳt = argmaxy R(ys)
end for

3 Experiments
We performed extensive experiments to assess the performance of the proposed approach.
We used real data obtained by RGB-D sensors to qualitatively evaluate the methods. For
quantitative evaluations we used synthetic data since real world annotated data are difficult
to obtain. The methods that have been included in our comparative evaluation are: (i) HMF:
The method of [11] that tracks a hand without estimating its shape. (ii) SOP: Tracking
the hand through HMF and perform only per-frame shape optimization. (iii) SFT: The full
proposed method. For all the methods we used the same likelihood to link the model with
the observations. The methods were tested on a computer equipped with an Intel i7-4770
CPU (quad-core 3.4GHz), and an Nvidia GTX 780 GPU.

The synthetic dataset that we used for the evaluation consists of 700 frames of free hand
movement mirrored to obtain a 1400 frames circular sequence. The reason why we did this
mirroring is to permit the evaluation of each method from different starting points within the
sequence. More specifically, the pose initialization of the methods is performed using the
ground truth position on 14 different frames. For the shape initialization we test different
parameter sets that are scaled with respect to the groundtruth shape by a ratio Rs. We test
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(a) (b) (c) (d) (e) (f)

Figure 2: SFT Tracked sequences examples. Two sets of two frames of the same sequence
tracked with two different shape initializations. Figures (a) and (c) show the initialization
while (b) and (d) the pose/shape estimation several frames later. The example demonstrates
that the method can handle shape initializations that are very far from the real shape. (a,b):
Rs = 0.75. (c,d): Rs = 2. (e,f): Example depth maps with noise ratio of 0.4.

values for Rs from 0.5 to 2 that correspond to hand shapes initializations that are smaller or
larger from the ground truth shape by the same ratios.

The pose error Ep measures the average distance between corresponding phalanx end-
points over a sequence similarly to [6]. The shape error Es is the Euclidean distance between
the 11D tracked and ground truth shape parameter vectors. For each experiment and for each
method we perform 42 runs and we report the mean error in all runs.

We are also interested in assessing the performance of the proposed method with respect
to noise in the observations. We simulate the imperfect data that come from a real depth sen-
sor, the imperfect foreground detection and the possible occlusions from unknown objects.
To do so, we randomly generated disk shaped regions in the first frame. Inside each such
region we either: (i) completely remove the depth and foreground labeling; (ii) label the area
as foreground and give it a depth value that is modeled by a Gaussian around the real average
depth. These “noise disks” then perform random walk in the input sequence which renders
the noise more persistent than the type of noise that has been used in [11] where at each
frame the noise disks appear in random locations. Fig. 2(e),2(f) shows some example frames
from a sequence with noise. This type of noise has the double effect of removing useful data
while introducing observations with depth values that are close to the actual depth of the
target. Thus, such artifacts cannot be discarded by some type of pre-processing.

History Size As already discussed, the proposed robust fitting method stores a history of
N f frames/pose estimates and Ns shape parameter estimates. Since these parameters affect
the accuracy and the computational cost of the algorithm the first experiment that we per-
formed measures the error metrics for different values of these parameters. We found that
the value of Ns had little effect on the accuracy with any value greater that 3-5 performing
equally well. However, the number of history frames affects the accuracy of the method,
especially in the presence of noise. The results for a sequence with high noise ratio (0.3) are
presented in Fig. 4(a),4(b). With short frame histories the method performs poorly. How-
ever, the accuracy increases fast with the N f . For the rest of the experiments we chose the
values N f = 50 and Ns = 5 as a good compromise between speed and accuracy.

Computational Cost The most computationally demanding part of all evaluated methods
is the likelihood evaluation. Therefore, a reasonable criterion for quantifying the computa-
tional cost is the total number of required such evaluations. In practice, even for two methods
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Figure 3: Pose (Ep) and shape (Es) error evolution over a simulated noisy sequence. The
HMF method does not alter the shape parameters and consequently Es remains constant.
SOP performs per-frame optimization of the shape parameters and provides unstable shape
estimates which is evident from the evolution of Es. SFT converges fast to a low Es value.

that perform the same number of evaluations, the actual speed varies depending on their de-
gree of parallelization. For the HMF tracker we chose a typical parameter setting with 100
particles that lead to around 800 likelihood evaluations and a frame rate of 60 f ps. The per-
frame optimization uses a PSO algorithm with 12 generations and 20 particles per generation
for a total of 240 likelihood evaluations, around 80 f ps. The meta-fitting with the aforemen-
tioned parameter settings requires the much lower number of 55 likelihood evaluations. The
SFT method that makes use of all of the above modules runs at approximately 25−30 f ps,
thus in real-time.

Shape Estimation Convergence An important property that we verified was that the pro-
posed SFT method’s shape estimation converges. Fig. 3 displays the evolution of Ep and
Es throughout the sequence during a typical run. HMF method’s shape error Es does not
change since it does not perform shape estimation. By only performing per-frame optimiza-
tion (SOP) we get some low Es values in several frames but the shape estimation remains
unstable. On the other hand, SFT converges fast to a low Es value that corresponds to a good
shape estimation. From the pose error Ep we observe that the pose estimation is evidently
influenced by the shape estimation and therefore SFT performs best while the two other
methods completely lose track somewhere around frame 550.

Inaccurate Shape Initialization We investigated the effect of the shape initialization ratio
Rs on the pose and shape estimation and we present the results in Fig. 4(c),4(d). The first
thing to note here is that for the Rs value of 1, that is, for perfect hand shape initialization,
the proposed SFT method has the same pose accuracy with HMF method. For Rs values that
range from 0.5 to 2 SFT has a much lower Ep and Es than the other two methods. From a
practical point of view, this range ensures that with a single average shape initialization, we
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can cover the vast majority of the possible subject hands that we might encounter in practice,
including hands of children.
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Figure 4: Quantitative Experiments (a, b):Pose and shape error for various maximum
history frame values N f . (c, d):Pose and shape error for various shape initializations. The
initialization ratios (x-axis) express the ratio between the shape parameters values that were
used for initialization and the ground truth shape parameters. (d, f):Pose and shape error for
various sequence noise levels.

Effects of Noise. In another experiment, we assessed the performance of the methods in the
presence of noisy observations. We vary the ratio of the image area that is contaminated by
noise and we plot the results in Fig. 4(e),4(f). As it can be verified, the proposed SFT method
outperforms the other two. We also note that the SOP method’s accuracy drops dramatically
with increasing noise levels. This is explained by the fact that the method overfits the model
to noise, as it performs only per-frame optimization.

Real World Data Experiments We performed extensive experiments with real world
RGB-D data. The proposed method behaves well even when the shape initialization is very
different from the actual hand shape. Fig. 2(a),2(c) shows indicative results with two dif-
ferent shape initializations. Test runs on real data are provided in: https://youtu.be/
4dgwoKkDSn8.

4 Conclusions
We presented a method that performs online, real time 3D tracking of a human hand with
simultaneous estimation of the hand model parameters. We experimentally demonstrated
the efficacy of the method using real RGB-D and simulated data. The method converges
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even with initializations that are far from the correct shape. In practice, this means that a
single, “average hand" model can set the starting point for hand adaptation and tracking of
any possible hand. The personalization of the hand model can be of interest on its own
right. At a minimum, the resulting model can be used by other tracking methods that do not
perform hand model adaptation. In this work, we used a specific set of shape parameters. As
future work, we consider learning the optimal hand shape parametrization from data, where
optimality is understood in terms of being able to explaining the maximum actual hand shape
variability with the minimum possible number of tunable parameters.
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