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Abstract

The `1-minimization used to seek the sparse solution restricts the applicability of
compressed sensing. This paper proposes a data separation algorithm with computation-
ally efficient strategies to achieve real-time performance of sparse model based motion
detection. We use the traditional pursuit algorithms as a pre-process step that converts the
iterative optimization into linear addition and multiplication operations. A novel motion
detection method is implemented to compare the difference between the current frame
and the background model in terms of sparse coefficients. The influence of dynamic
texture or statistical noise diminishes after the process of sparse projection; thus, en-
hancing the robustness of the implementation. Results of the qualitative and quantitative
evaluations demonstrate the higher efficiency and effectiveness of the proposed approach
compared with those of other competing methods.

1 Introduction

Motion detection is the problem of segmenting moving objects from a given image sequence
or surveillance video. This topic has drawn considerable attention in the field of computer
vision and video processing over the past decades. Three types of methods have been de-
veloped in the existing literature, namely, optic flow, frame difference, and background sub-
traction (BGS). The most prevalent approach is BGS, which establishes a background model
through a certain method, and then calculates the difference between the current frame and
the background to segment the foreground area. One notable work of BGS is the statistical
background model [9, 12, 21, 27], which has been adequately researched and developed in
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the past years. Then, the principal component analysis (PCA) [17, 18] was employed to cap-
ture the spatial configurations instead of pixel-wise processing. Previously, numerous BGS
methods with various theories have been proposed, such as artificial neural networks [15],
classification model [1], texture descriptor [19], and so on. Above mentioned approaches
and algorithms can be categorised as classic BGS methods.

The successful development of sparsity resulted in the introduction of sparsity [3, 11,
20, 23, 25] as a watershed for motion detection. Cevher et al. [3] regarded background
subtraction as a sparse approximation problem, and obtained a low-dimensional compressed
representation of the background. Subsequently, the foreground was directly recovered via
the compressed sensing (CS) theory. Huang et al. [11] added a prior of group sparsity clus-
tering as a new constraint in the process of sparse recovery and extended the CS theory
to manage the dynamic background scenes efficiently. Sivalingam et al. [20] and Zhao et
al. [25] regarded the foreground mask as a problem of sparse error during their utilization of
dictionary atoms to represent a new frame. Subsequently, Xiao et al. [23] extended the as-
sumption of CS for BGS [3] by adding an assumption that the projection of the noise over the
dictionary is irregular and random. Recently, low rank and sparse decomposition [5, 13, 26]
becomes a novel direction for the sparse model based motion detection. This sort of methods
employs the coherence of continuous frames and applies iterative optimization to obtain the
foreground and background simultaneously.

The sparse model of BGS achieves more competitive results over classic approaches,
especially performs more robust on adaptive and noisy images [14, 23]. In order to seek
the solution of sparse model, a veriety of pursuit algorithms have been proposed. From the
simplest matching pursuit (MP) [16] or orthogonal matching pursuit (OMP) [22] to the rel-
atively efficient Bregman iterative algorithms [24].However, these optimization algorithms
are not fast enough for real-time implementation. A more efficient sparse model based mo-
tion detection algorithm is imperative.

The key innovation of this work is the introduction of a novel decomposition scheme of
sparse optimization for motion detection. This idea is inspired by the theory of data separa-
tion of sparse representations [8]. We simplify the process of `1-minimization and consider
it as a pre-process step. In the proposed approach, the test/observed signal is separated into
a number of basic atoms. For each atom, the sparse coefficient is calculated using the pre-
learned dictionary with the existing `1-minimization algorithms. After iterating all these
atoms, the same number of children sparse vectors can be obtained. We assume that any
observed/test data can be linearly represented by those atoms. Consequently, the sparse co-
efficient can also be regarded as the linear combination of children sparse vectors. Given
that the children sparse vectors calculation is a pre-processing step, the `1-minimization can
be simplified into addition and multiplication operations.

2 Data Separation of `1-Minimization
For a given signal y ∈ Rm, the sparse model is a process of pursuing the sparsest solution
α ∈ Rn of y over a given dictionary D ∈ Rm×n as follows:

P1 : α̂ = argmin‖α‖1 s. j. Dα = y. (1)

where, in the problem of motion detection, foreground is defined as the sparse error ε =
y−Dα̂ [20], where Dα̂ can be regarded as the background model.
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Commonly, the problem P1 is a transformation of the original sparse model with replac-
ing the `0 norm with the `1 norm. This is because of the non-convex characteristic of the
`0 norm. Ideally, it is not capable of finding the sparsest solution except by exhausting the
entire subspaces of α . P1 can be solved in polynomial by standard convex programming
methods [4] or other optimization algorithms [7, 16, 22, 24]. Nevertheless, these existing
`1 minimization approaches are computationally expensive because the convex value is op-
timized in an iterative manner. This work proposed a data separation approach to tackle this
problem.

Recovered
image

(a) Data separation (b) Bregman iterative [24] (c) Lasso [7]

Recovered
error

(d) Data separation (e) Bregman iterative [24] (f) Lasso [7]

Figure 1: Comparison of recovered results with different `1-minimization algorithm. (a)-(c):
The recovered Lena image(256×256) by proposed Data separation, Bregman iterative [24],
and Lasso [7]. Their execution time of recovery are 0.12s, 100.16s, and 4.18s, respectively.
(d)-(e): The recovered error by proposed Data separation, Bregman iterative [24], and Lasso
[7]. The percentage of recovered error in pixel level is 0.0331, 0.0176 and 0.1317 respec-
tively.

For a given signal y ∈ Rm, the proposed approach separates y as the linear combination
of the basis vectors ei, which is defined as atoms in this paper:

y = γ1e1 + · · ·+ γiei + · · ·γmem, (2)

where γi is the coefficient of y over the basis vectors ei, and it could be computed easily
by simply projecting y on a basic vector ei, i.e., the i-th coordinate of y. For example, the
image vector in this work is separated to the smallest atoms ei which contains one non-zero
standard element as:

ei =

0,0, · · · , 1︸︷︷︸
i

, · · · ,0,0

T

. (3)

The signal is not limited to the atom used in this work, but can be separated into a variety
of patterns of atoms. Each ei can be considered as the observed signal in (1) and convert P1
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as follows:
Pei

1 : β̂i = argmin‖βi‖1 s. j. Dβi = ei, (4)

where βi is defined as the children sparse vector in this paper.
Most data can be classified as multimodal data composed of irrelevant subcomponents,

such as imaging data from neurobiology, which are typically composed of the soma of a
neuron, dendrites, and spines [8]. Donoho and Huo [6] suggested that choosing distinct
bases that are adapted to different subcomponents will allow separation. Inspired by this
idea, we assume that the sparse solution α of y can be separated into the linear combination
of its children sparse vector βi as follows:

α ≈ γ1β1 + · · ·+ γiβi + · · ·γmβm. (5)

For the motion detection problem, we can pre-solve the children sparse vector βi with
the existing `1-minimization algorithms. Then, the sparse solution of a new signal or image
y can be rapidly obtained by Eq. (5). Then, the iterative process in the existing `1 algorithms
is replaced by addition and multiplication operations.

Another important question is about the numerical distance of the sparse solution be-
tween the use of the classic `1-minimization and data separation algorithm. The distance is
acceptable for many applications, (e.g., motion detection), but not for others, (e.g., image de-
blurring). If tolerable in a specific work, distance can be used as acceleration engine, which
can dramatically improve applicability. The numerical distance can be visually represented
as the recovered error in Fig. 1. Although the recovered results are not the best, the proposed
data separation approach can significantly accelerate the `1-minimization.

3 Motion detection

3.1 Sparse model for motion detection
The background subtraction problem is usually formulated as a linear combination of a back-
ground model IB and a foreground candidate IF . The key idea of the sparse model of motion
detection is the application of dictionary D. Generally, dictionary D has various forms, such
as a pre-learned [23] or updating online [25]. The atoms d in dictionary D represent the
bases of image signal or the special configurations. Subsequently, the background model in
motion detection can be represented as the sparse and linear combination of the atoms in the
dictionary D :

IB = D×α, (6)

where α is the sparse coefficients that can be computed by linear programming P1 in Eq. (1).
According to background subtraction, the foreground IF is the difference between the

current frame and the background model IB:

IF = I− IB = I−D×α, (7)

where foreground IF is formulated as a sparse error.
In the classic sparse model of motion detection, the background update process serves to

update the sparse coefficients α or both of the coefficients α and dictionary D in each frame
or couple of frames according to the implementation requirements. The computation of
sparse coefficients α or updating dictionary D accounts for most of the computing resources
and restricts the real-time implementation of above model.
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3.2 Data separation for motion detection
The proposed method improve the classic model in two aspects, namely, (1) data separation
acceleration and (2) the comparison of the sparse coefficients.

We construct the image atoms ei in Eq. (3) as the same size as the background IB. The
Bregman iterative algorithm [24] is employed to calculate the children sparse vector βi of ei.
Consequently, the background model in Eq. (6) can be rewritten as follows:

IB = D×α ≈ D×∑i γiβi, (8)

where γi is linear coefficients of the background model IB over the atom ei.
Detection requires a high level of consideration to enhance the robustness because the

dynamic textures or complicated environment can affect the corrupted frame I in Eq. (7).
In this work, we project the current frame I over the pre-learned dictionary D and compute
the sparse codes α ′ with the data separation algorithm. Then, the formula is converted as
follows:

IF = D×α
′−D×α ≈ D×∑i γ

′
i βi−D×∑i γiβi = D×∑i(γ

′
i − γi)βi, (9)

where γ ′i is linear coefficients of current frame I over the atom ei.

Water
Surface

[12]

Skating
[10]

(a) (b) (c) (d)

Figure 2: Patch refinement. (a) Two frames are extracted from water surface [12] and skat-
ing [10] and which reflect dynamic scenes. (b): Ground truth. (c)-(d): First and second stage
detection results with proposed method.

Accordingly, we compare each patch to decide whether the frame belongs to the fore-
ground through the distribution of the sparse coefficients.{

∆1 = ‖∑i γ ′i βi−∑i γiβi‖1 ,

∆2 =
∣∣‖∑i γ ′i βi‖0−‖∑i γiβi‖0

∣∣ , (10)

where ∆1 and ∆2 are the differences of sparse coefficients distributions and values between
the background model and the current frame. Given that the distributions and values re-
flect which subspace is expanded by the test frame, we can use these parameters to decide
whether the content of the monitoring scene has moving activity. Specifically, if the image
content remains the same, it tends to have identical distributions and corresponding values.
By contrast, if the foreground object enters the scene and changes the content, it generates
distinct distributions.

Citation
Citation
{Yin, Osher, Goldfarb, and Darbon} 2008

Citation
Citation
{Li, Huang, Gu, and Tian} 2004

Citation
Citation
{Goyette, Jodoin, Porikli, Konrad, and Ishwar} 2012

Citation
Citation
{Li, Huang, Gu, and Tian} 2004

Citation
Citation
{Goyette, Jodoin, Porikli, Konrad, and Ishwar} 2012



6LIU et al.: DATA SEPARATION OF `1-MINIMIZATION FOR REAL-TIME MOTION DETECTION

To obtain a more precision result, we post-process the differences of the sparse coeffi-
cients as shown in follow:

∆ = λ1∆1 +λ2∆2, (11)

where λ1 and λ2 are the unitary parameters which determine the weight of ∆1 and ∆2 respec-
tively. Since `1 norm can better represent the distribution of the sparse coefficient and make
the difference more distinguishable, λ1 is then set to be a relatively larger value (0.70) as the
dominant weight, while λ2 is 0.30.

The dictionary based on patches leads to unsatisfactory exhibition in precision as shown
in Fig. 2(c). To obtain a pixel level result, the proposed method includes two-stage fore-
ground detection. The first stage roughly detects the foreground in the patch, and the second
stage refines the detection results on top of the first stage. For each foreground block, we
use a smaller sliding window to determine whether the central pixel belongs to the fore-
ground. Pixel-wise refinement as shown in Fig. 2(d) achieves more precise detection results.
This two-stage approach can speed up the process of detection compared with single sliding
window operation. The whole data separation of motion detection method is described in
Algorithm 1.

Algorithm 1: Data separation of motion detection
Input : Image sequence I1, · · · , IN ;
Output: The binary foreground IF

1 , · · · , IF
N ;

Data separation (pre-process):
1 Separate each image Ii into M independent patches: P1

i , · · · ,PM
i ∈ Rm×1;

2 Construct atom e j likes Eq. (3) as the same dimension as the image patch P,
j ∈ [1, · · · ,m];

3 Compute the children sparse vectors β j of e j by Bregman iterative [24];

Motion detection:
4 Set the patch of background model Pk

B = Pk
1 ≈ D×∑ j γk

j β j, k ∈ [1, · · · ,M];
5 for i← 2 to N do
6 for k← 1 to M do
7 Compute the foreground difference Pk

F = D×∑i γk
i βi−Pk

B;
8 Obtain the binary foreground by threshold selection with Eq. (10) and (11);
9 if Pk

i is detected as foreground then Refine the Pathc Pk
i ;

10 Update the background model Pk
B;

4 Experiments

To evaluate the performance of the proposed method, the study experiments the proposed
method in two parts: one is tested on public datasets [10, 12] and the other one is tested on
corrupted video signal. The size of the tested videos is 160×128. The sizes of the dictionary
in the two-stage detection are 8×8 pixels with 256 atoms in the first stage and 3×3 pixels
with 256 atoms in the second stage. Under above spatial resolution and patch sizes, the
proposed method deals with a frame in 0.03-0.05 seconds on MATLAB implementation.
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The execution time is recorded by a laptop with a 2.50 GHz Intel Core i7-4710MQ processor
and 16GB of RAM.

In this section, we qualitatively and quantitatively compare the proposed method with
classic motion detection algorithms improved mixtures of Gaussian model (MoG) [27] and
kernel density estimate (KDE) model [9], advanced algorithms SOBS [15] and ViBe [1],
sparse model Xiao et al. [23] and low rank model DECOLOR [26]. For all algorithms, we
experiment with adjustments of parameters until results seem optimal on the tested dataset.

4.1 Dynamic scenes
The movement in the captured scenes can be divided into two parts. One part is the fore-
ground, which is an independent object and has no relationship with the scene. The other
part is periodical or irregular, such as rain, snow, waves, and shaking trees and should be
classified as the background based on its relevance to the scene. Therefore, the ability to
distinguish the two kinds of movement becomes an important criterion for motion detection.

We compare various motion detection approaches with our method under diverse dy-
namic scenes as shown in Fig. 3. The testing frames are extracted from datasets, namely,
curtain [12], fountain [12], water surface [12] in which different types of dynamic turbu-
lences, such as the curtain blown by the wind (Fig. 3(a)), flowing water (Figs. 3(b), 3(c),
3(f)), or falling snowflakes (Fig. 3(d), 3(e)). We find that the detection results of traditional
statistical model (rows 2 to 3 of Fig. 3) are not satisfactory because the statistical model or
kernel function failed to manage the irregular turbulence well. The imprecise model leads to
unsatisfactory results. SOBS [15] and the proposed method effectively eliminate the influ-
ence of the dynamic textures and detect the foreground precisely. The low rank and sparse
model DECOLOR [26] and Xiao et al. [23] achieves more stable performance but lacks ef-
ficiency. While the data separation algorithm is able to help those sparse approaches more
competitive on processing time without sacrificing the effectiveness.

4.2 Corrupted scenes
Brutzer et al. [2] reviewed numerous methods used in noisy night videos and concluded
that, the results of this experiment show quite low performance for all evaluated approaches.
The classic motion detection methods are focused more on handling complex and dynamic
scenes, such as rain, snow, waves, and shaking trees, and do not consider the quality of the
images. In real applications, image signals are polluted in such cases as low light surveillance
(Figs. 4(d)-4(f)), heat in the sensor, or turbulence in the signal transmission, in which high
level of noise or corrupted signal causes existing algorithms to perform inappropriately (rows
3 to 7 of Fig. 4).

We explore the robustness of different motion detection methods for corrupted signal
as shown in Fig. 4. The datasets of Figs. 4(a)-4(c) are extracted from [10], whereas the
Figs. 4(d)-4(f) are captured by SONY IMX 104CMOS. In Figs. 4(a)-4(b), we add synthetic
noise to the original frames to simulate the low signal to noise ratio (SNR). The compared
classic approaches are obviously affected by noise in different degrees, whereas our method
performs robustly and manages noise efficiently. The sparse method of Xiao et al. [23] is
designed to cope with noisy sences and obtain a better results than classic methods. However,
the proposed data separation method not only accelerates the efficiency of Xiao et al. [23]
but also refines the cursory results. DECOLOR [26] appears to be robust to noise, but its
accuracy is much lower than that of the previously proposed method (row 8 of Fig. 4).
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Test
frames

Ground
turth

I-MoG
[27]

KDE
[9]

SOBS
[15]

ViBe
[1]

Xiao et
al.

[23]

DE-
COLOR

[26]

Our
method

(a) (b) (c) (d) (e) (f)

Figure 3: Comparison of detection results on dynamic videos. The testing frames are ex-
tracted from dataset Curtain [12], Fountain [12], Water surface [12], Snow fall [10], Skat-
ing [10] and Fountain02 [10] that exists dynamic turbulence such as the curtain blown by the
wind, flowing water or the falling snowflakes. 1st row: testing frames; 2nd row: ground truth;
3rd to 6th rows are the detection results of classic methods including improved MoG [27],
KDE model [9], SOBS [15] and ViBe [1]; 7th to 9th are the detection results of sparse
methods including Xiao et al. [23], DECOLOR [26] and our method.

4.3 Quantitative results

The quantitative performance of these algorithms on pixel-level is evaluated in this sec-
tion. This study adopts three different quantitative metrics: Recall, Precision and F-measure
from [15]. And, the execution time of each presented methods is also considered. We re-
gard the processed frames per second (fps) as the quantitative criterion for the computational
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[27]

KDE
[9]
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ViBe
[1]

Xiao et
al.

[23]

DE-
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[26]

Our
method

(a) (b) (c) (d) (e) (f)

Figure 4: Comparison of detection results on corrupted videos. The testing frames are ex-
tracted from dataset Office [10], Pedestrian [10], Back door [10] or Low light video taken
by ourselves. We added synthetic noise that contains a mixture of Gaussian white noise
(σ = 30) and Poisson noise (scale factor ρ = 12) to the first three datasets. The illumination
of last two videos is about 1.5-2.0 lx, 0.7-1.0 lx and 0.3-0.5 lx, respectively. 1st row: testing
frames; 2nd row: ground truth; 3rd to 6th rows are the detection results of classic methods
including improved MoG [27], KDE model [9], SOBS [15] and ViBe [1]; 7th to 9th are
the detection results of sparse methods including Xiao et al. [23], DECOLOR [26] and our
method.

efficiency.
Table 1 shows the results of the quantitative metrics over four datasets. All of the testing

datasets in Table 1 provide available ground truth as a binary mask. The last two are the
basic motion detection datasets, to which we add synthetic noise. The compared methods
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have poor performances because false detection was affected by noise, whereas the proposed
method operates well in terms of quantity regardless of the noise signal. Since the classic
`1 minimization is optimized in an iterative manner, the sparse model based approach Xiao
et al. [23] and DECOLOR [26] can only achieve 4 fps and 1 fps respectively which is rel-
atively slow for realistic applications. While the proposed method significantly improves
the efficiency (around 30 fps) by converting the iterative optimization into linear addition
and multiplication operations. Note that these operations also facilitate implementations on
hardware, which help the CS more practical.

Table 1: The quantitative metrics of compared methods. Recall, Precision and F-measure are
selected as the quantitative performances of the compared methods while the computational
efficiency is evaluated by the criterion of fps. (Best: Bold; Second best: Underline)

Dataset Metrics

Classic methods Sparse methods

I-MoG
[27]

KDE
[9]

SOBS
[15]

ViBe
[1]

Xiao et al.
[23]

DECOLOR
[26] Ours

Recall 0.6721 0.8198 0.8821 0.7120 0.8758 0.9433 0.9382
Precision 0.7833 0.9352 0.8892 0.8672 0.8155 0.9202 0.9223
F-measure 0.7235 0.8737 0.8856 0.7820 0.8446 0.9316 0.9302

Curtain
[12]

Fps 15.6 12.0 30.1 31.9 3.8 0.87 29.8
Recall 0.7912 0.7550 0.9731 0.8201 0.8025 0.7980 0.9233

Precision 0.6300 0.6039 0.9324 0.5241 0.7741 0.7512 0.9690
F-measure 0.7015 0.6710 0.9523 0.6396 0.7880 0.7739 0.9456

Fountain
[12]

Fps 18.2 15.8 32.5 33.3 4.3 1.1 30.2
Recall 0.5230 0.4109 0.5663 0.5273 0.7322 0.4582 0.7922

Precision 0.2052 0.3060 0.5627 0.1828 0.8634 0.5133 0.9525
F-measure 0.2948 0.3508 0.5645 0.2715 0.7924 0.4842 0.8650

Office
with noise

[10] Fps 10.2 8.5 24.0 29.3 3.8 2.1 25.0
Recall 0.4052 0.3631 0.5628 0.5963 0.6594 0.5922 0.6168

Precision 0.1060 0.1252 0.4608 0.0844 0.6984 0.4752 0.8523
F-measure 0.1680 0.1862 0.5067 0.1479 0.6783 0.5273 0.7157

Pedestrian
with noise

[10] Fps 11.5 9.8 28.3 30.1 5.3 1.8 26.3

5 Conclusion

Sparse model based motion detection methods are more robust and adaptive [14]. However,
the iterative optimization process to seek the sparse solution is computationally expensive.
This paper proposed a data separation algorithm to fill the gap of efficiency where previous
sparse model based approaches could not reach.

This work is at very preliminary stages. How the signal separated into basic atoms has
remained an open question. A satisfactory result can be obtained in separating the signal
even with the use of the simplest method as demonstrated by this work. Simultaneously,
many other approaches can potentially define and describe the basic features or atoms of
an image signal better. Another future work is to measure the numerical difference of the
sparse solution with or without using data separation. The difference is acceptable for motion
detection, but it does not mean it can be used for other applications. Thus, mathematically
defining this difference is able to decide the potential of the data separation algorithm.
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