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The `1-minimization (`1-min) used to seek the sparse solution restricts
the applicability of compressed sensing. In this study, We use the existing
`1-min algorithms as a pre-process step that converts the iterative opti-
mization into linear addition and multiplication operations. This paper
then proposes a data separation algorithm with computationally efficient
strategies to achieve real-time performance of sparse-based motion detec-
tion.

For a given signal y ∈ Rm, the proposed approach separates y as the
linear combination of the basis vectors ei, which is defined as atoms in
this paper:

y = γ1e1 + · · ·+ γiei + · · ·γmem, (1)

where γi is the coefficient of y over the basis vectors ei, and it could be
computed easily by simply projecting y on a basic vector ei, i.e., the i-th
coordinate of y. For example, the image vector in this work is separated
to the smallest atoms ei which contains one non-zero standard element as:

ei =

[
0,0, · · · ,1

i
, · · · ,0,0

]T
. (2)

The signal is not limited to the atom used in this work, but can be
separated into a variety of patterns of atoms. Each ei can be considered as
the observed signal and convert original `1-min problem P1 as follows:

Pei
1 : β̂ββ i = argmin‖βββ i‖1 s. j. Dβββ i = ei, (3)

where βββ i is defined as the children sparse vector in this paper.
Inspired by [2], we assume that the sparse solution α of y can be

separated into the linear combination of its children sparse vector βββ i as
follows:

α ≈ γ1βββ 1 + · · ·+ γiβββ i + · · ·γmβββ m. (4)

For the motion detection problem, we can pre-solve the children sparse
vector βββ i with the existing `1-min algorithms. Then, the sparse solution
of a new signal or image y can be rapidly obtained by Eq. (4). Then, the
iterative process in the existing `1 algorithms is replaced by addition and
multiplication operations.
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Figure 1: (a)-(c): The recovered Lena image (256×256) by proposed
Data separation, Bregman iterative [3], and Lasso [1]. Their execution
time of recovery are 0.12s, 100.16s, and 4.18s, respectively. (d)-(e): The
recovered error by proposed Data separation, Bregman iterative [3], and
Lasso [1]. The percentage of recovered error in pixel level is 0.0331,
0.0176 and 0.1317 respectively.

Another important question is about the numerical distance of the
sparse solution between the use of the classic `1-min and data separation
algorithm. The distance is acceptable for many applications, (e.g., mo-
tion detection), but not for others, (e.g., image deblurring). If tolerable in
a specific work, distance can be used as acceleration engine, which can

dramatically improve applicability. The numerical distance can be visu-
ally represented as the recovered error in Fig. 1. Although the recovered
results are not the best, the proposed data separation approach can signif-
icantly accelerate the `1-min.

We construct the image atoms ei in Eq. (2) as the same size as the
background IB. The Bregman iterative algorithm [3] is employed to cal-
culate the children sparse vector βββ i of ei. Consequently, the background
model based on sparse representation can be rewritten as follows:

IB = D×α ≈ D×∑i γiβββ i, (5)

where γi is linear coefficients of the background model IB over the atom
ei.

Detection requires a high level of consideration to enhance the ro-
bustness because the dynamic textures or complicated environment can
affect the corrupted frame I. In this work, we project the current frame I
over the pre-learned dictionary D and compute the sparse codes α ′ with
the data separation algorithm. Then, the formula is converted as follows:

Pi
F = Dα

′−Dα ≈ D×∑ j γ
′i
j βββ j −D×∑ j γ

i
jβββ j

= D×∑ j(γ
′i
j − γ

i
j)βββ j, (6)

where γ ′i is linear coefficients of current frame I over the atom ei.
Accordingly, we compare each patch to decide whether the frame be-

longs to the foreground through the distribution of the sparse coefficients.{
∆1 =

∥∥∑i γ ′i βi −∑i γiβi
∥∥

1 ,

∆2 =
∣∣∥∥∑i γ ′i βi

∥∥
0 −‖∑i γiβi‖0

∣∣ , (7)

where ∆1 and ∆2 are the differences of sparse coefficients distributions
and values between the background model and the current frame.

To obtain a more precision result, we post-process the differences of
the sparse coefficients as shown in follow:

∆ = λ1∆1 +λ2∆2, (8)

where λ1 and λ2 are the unitary parameters which determine the weight
of ∆1 and ∆2 respectively.

This work is at very preliminary stages. How the signal separated
into basic atoms has remained an open question. A satisfactory result
can be obtained in separating the signal even with the use of the simplest
method as demonstrated by this work. Another future work is to mea-
sure the numerical difference of the sparse solution with or without using
data separation. The difference is acceptable for motion detection, but
it does not mean it can be used for other applications. Thus, mathemat-
ically defining this difference is able to decide the potential of the data
separation algorithm.

[1] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle re-
gression. The Annals of statistics, 32(2):407–499, 2004.

[2] Y. C. Eldar and G. Kutyniok (Eds.). Compressed sensing: theory
and applications. Chapter 11. Cambridge University Press, ISBN:
9781107005587, 2012.

[3] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algo-
rithms for compressed sensingand related problems. SIAM J. Imaging
Sciences, 1(1):143–168, 2008.


