
KOLAGUNDA, LU, KAMBHAMETTU: HSSR 1

Hybrid Hierarchical Shape Representation
for Medical Shapes
Abhishek Kolagunda

Guoyu Lu

Chandra Kambhamettu
https://www.eecis.udel.edu/wiki/vims/

Department of Computer and
Information Science
University of Delaware
DE, USA

Abstract

Advances in 3D medical imaging technology have led to an increase of interest in
shape analysis of organs. This has in turn led to explosion of 3D medical shape data
being collected. 3D shape data is also being used for simulations and to guide mini-
mally invasive and remote surgical procedures. We present a Hierarchical-Hybrid Shape
Representation (HSSR) which is compact and has both explicit and implicit forms. The
compactness of the representation largely reduces storage requirement and communica-
tion overheads. The explicit and implicit forms can be used for accurate visualization of
organ shapes and guide surgical procedures. The hybrid shape model proposed is a com-
bination of Extended Superquadrics and Radial Basis interpolation function (RBF) that
separately models the base shape and surface deformations. We also present an automatic
method to fit the hybrid shape model to complex shapes by hierarchically dividing the
shape into parts. Finally, we propose a technique to reconstruct shape from its compact
representation by recursively blending the parts using intersection shapes. Our extensive
experiments show that our shape representation method significantly outperforms other
existing approaches in both accuracy and compactness.

1 Introduction
Medical imaging techniques such as Computed Tomography (CT) and Magnetic Resonance
(MR) play an important role at all levels of health-care system today. There has been in-
creased interest in shape analysis, disease classifiers and other statistical analyses of the
medical data which can be used to improve modern heath-care system. This has led to huge
amounts of high quality medical data being collected. Much effort is spent on storing, man-
aging and sharing the data with collaborators [22, 23]. Recently, shape analysis has become
of increasing interest in the medical community due to its potential in capturing the morpho-
logical variations across a population. The high quality 3D images captured can be used to
extract 3D shape of the organs [19, 21]. 3D models of organs can also be used for training
personnel, for visualization during image guided interventions and in simulations. The large
amounts of 3D shape data generated by these systems pose challenges in storing, retrieving
and visualizing 3D structures.
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In minimally invasive surgical procedures, to help guide the surgeon, the 3D shape of the
organ is captured prior to the procedure and is used for visualizing the organ and the defor-
mation it undergoes during the procedure. Recent advances in MRI and robotic technologies
have led to the development of MRI guided robotic interventions and remote surgical proce-
dures [1, 2, 3, 4, 5]. A shape model that has implicit and explicit forms, which can model
rigid and non-rigid deformations will assist in planning and monitoring trajectory of surgical
instrument with respect to the organ surface. A compact representation for shape reduces
storage requirement and communication delays for remote surgical procedures where the
shapes have to be sent over a network for visualization at remote location.

Point Distribution Model [17] has been widely used to model 3D shapes of organs,
mainly for performing statistical analysis of the shape and for use in deformable model
based segmentation. NURBS are piece-wise parametric functions that are extensively used
to model complex shapes. RBF interpolation functions have been widely used in the field
of computer graphics to model 3D shapes as implicit surfaces [15, 16]. RBF and NURBS
model shape as piece-wise local surface patches. The local shape representations while are
accurate requires large number of parameters.

In [8] deformable superquadrics were used to model 3D objects. The authors used global
deformations like tapering, bending and cavity. They used LM method to perfrom non linear
least square fit. Hyperquadrics was introduced in [28] which models shape as combina-
tion of linear terms raised to powers. Zhou et al. [6] proposed the extended superquadric
which can model a wide range of non-symmetric objects by replacing the constant exponents
with functions. They used Bernstein polynomial (Bezier curves) for the exponent functions.
These global representations with their compact form can model only limited set of shapes.
There have been works where the global and local representations have been combined to
compactly model more complex shapes. Bardinet et al. [11] use deformable superquadrics
introduced in [18], to model the global shape and then model the local deformations using
free form deformations; they find control points on a grid to deform the initial superquadric
fit. Tutar et al. [9] modeled the global shape using superquadric and the local deformations
using Fourier descriptors to generate closed tubular surfaces. Spherical harmonics were
used in [10] to model shapes of prostate. Lee et al. [25] represented a shape as a com-
bination of low-resolution mesh and a deformation field. Though these representation can
model relatively complex shapes they do not have both implicit and explicit forms. Hybrid
Hyperquadrics was proposed in [30] which allowed both local and global control of shape.
Extended superquadrics with cubic spline as exponent function were used in [7] . To model
shape of complex 3D objects, authors iteratively segmented the object into multiple pieces
across planes having error of fit greater than a threshold. They used genetic algorithm to
solve for the extended superquadric parameters. Bischoff et al. [24] proposed a compact
representation of the shape which is a combination of 3D points and ellipsoids. Chevalier et
al. [29] modeled parts of the object using superquadrics. Parts based modeling of shapes are
usually limited by the capabilities of the geometric functions used to model each part. Using
a simple shape model for the parts affects the accuracy of fit and a complex shape model
makes the fitting process computationally challenging.

We propose a compact hybrid shape model as a combination of Extended Superquadrics
(ESQ) and RBF interpolation function. The two functions are combined to have both explicit
and implicit forms. We also present a method to fit the shape model to complex shapes by
hierarchically dividing the shape into approximately convex parts. To reconstruct the shape
from its representation, we propose a method to blend parts using the intersection shape
between parts.
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2 Shape Representation

We use a binary tree representation for shape. Each node except the leaves contain three
pieces of information: links to the left and right nodes representing constituent parts of the
shape, and information required to combine its two constituent parts. A leaf node holds geo-
metric representation of a part. We call this Hierarchical-Hybrid shape representation since a
shape is hierarchically decomposed into its constituent parts and the parts are represented by
a hybrid geometric model. Details of the hybrid geometric representation, the hierarchical
decomposition of the shape and the method for combining decomposed parts are presented
in the following sections.

2.1 Shape Model

Given shape is formed by a base shape and surface deformations. The hybrid shape model
described here tries to capture these two components of the shape separately. ESQ is used
to capture the base shape and RBF surface is used to capture the surface deformations. The
two models are combined such that their combination has both explicit and implicit forms.
The 3D shape model in its parametric form is given as f (θ ,φ) = h(θ ,φ)+g(θ ,φ). f is an
injective function that maps points from the 2 dimensional space (Latitude and Longitude)
to the 3 dimensional Euclidean space (X, Y, Z). h is the extended superquadric function and
g is radial basis interpolation function. The points on the surface of the shape are given by

(X ,Y,Z) = f (θ ,φ)

X = a · sign(cosθcosφ)|cosθ |ε2 |cosφ |ε1 + r · cosθcosφ

Y = b · sign(sinθcosφ)|sinθ |ε2 |cosφ |ε1 + r · sinθcosφ

Z = c · sign(sinφ)|sinφ |ε1 + r · sinφ

−π/2≤ θ ≤ π/2,−π ≤ φ ≤ π

(1)

Constants a, b and c give the extent of the ESQ. Exponents ε1 and ε2 are the shape param-
eters of the ESQ. The exponents are functions of θ (azimuth) and φ (elevation) respectively,
modeled using cubic splines. An ESQ at an arbitrary position also has translation and rota-
tion parameters. We define offset r in terms of the ESQ as r(θ ,φ) = −s(θ ,φ) · ||h(θ ,φ)||
where, scale factor s(θ ,φ) is modeled by RBF. This implies that the surface deformations
are modeled by non-uniform scaling of the ESQ surface. It has to be noted that f is injective
and its domain is closed. That is, the shapes it can model have exactly one point on the
surface given an azimuth and an elevation.

The implicit form of an ESQ is given as

F (x,y,z) =

[(
|x|
a

)2/ε2

+

(
|y|
b

)2/e2
]ε2/ε1

+

(
|z|
c

)2/ε1

= 1. (2)

An arbitrary point P on a shape can be expressed in terms of an ESQ as P = F(P)
ε1
2 ·Q

where, Q is a point on the ESQ which has the same azimuth (θP) and elevation (φP) as P
(see sec. 2.2). The scale factor to offset the ESQ surface so that it matches the shape at P, is
given as s(θP,φP) = (1−F(P)

ε1
2 ). Given the implicit form F of ESQ and its relation to the



4 KOLAGUNDA, LU, KAMBHAMETTU: HSSR

scale factor s that is modeled by RBF, the implicit form our shape model can be written as

F(x,y,z)
ε1
2 +

N

∑
j=1

w jλ (d j) = 1 (3)

λ is a Gaussian with compact support, d j is the distance of a point (x,y,z) from the jth RBF
center measured as cosine distance, w j is a weight associated with jth RBF center. RBF
centers are uniformly sampled on a unit sphere.

2.2 Shape Model Fitting
A two stage process is used for fitting the shape model to points. ESQ is first fit to the point
cloud and then RBF is used to fit the residual error. The error of fit function for fitting ESQ
is defined using its implicit form. The error of fit (EoF) for a point P is measured as the
distance from point P to a point Q on the ESQ surface such that P−O = β (Q−O) where O
is the center of the ESQ. Assuming that the ESQ is centered at the origin.

F(P/β ) = 1
β = [F (P)]ε1/2

D = |β −1|× ||(P/β ) ||.
(4)

The EoF is hence

EOF =
Ndata

∑
i=1
||(xi,yi,zi)||× |1−F (xi,yi,zi)

ε1/2 |+C1 +C2 +C3. (5)

Additional constraints C1, C2 and C3 on the parameters of ESQ are also added to the EoF.
A smoothness constraint for the exponent function is added. Since cubic splines are used
as the interpolation functions for the exponents, the smoothness term penalizes the fit if the
leading coefficient of the cubic polynomials are greater than a threshold T . As described in
[6] additional constraints that both scale and exponent functions must be positive and that
the ESQ fit is of the least possible volume are also added.

C1 = α1[max( f ′′′1 −T,0)+max( f ′′′2 −T,0)]
C2 = α2[max(−a,0)+max(−b,0)+max(−c,0)+max(−ε1,0)+max(−ε2,0)]
C3 = α3(a∗b∗ c)

(6)

α1, α2 and α3 are weights for the three constraint terms respectively. Levenberg-Marquardt
method for non-linear least square fit is used iteratively for minimizing the EoF and finding
the number of control points required for exponent functions[6]. The weights α1, α2 and α3
were set to 1,100 and 1 respectively. The threshold T was set to 500 in our experiments for
fitting the shape model.

The residual error is measured as (1−β ) in Eq. 4. Before measuring residual error, the
input point cloud is transformed using the orientation parameters of the ESQ such that it is
centered at the origin and aligned to the coordinate axes. A Gaussian with compact support
is used as the radial basis function. The RBF centers are picked by uniformly sampling
points on a unit sphere. The RBF weights are obtained by solving the linear system Ax = b.
A is a cosine distance matrix, b vector of residual errors and x is the vector of weights to be
solved for. Each row of A is a vector of cosine distances from a point on the shape to the
RBF centers. Each row of b is the residual error of ESQ fit for a point. We use the greedy
algorithm [16] which iterates over number of centers to be used for fitting RBF.

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 



KOLAGUNDA, LU, KAMBHAMETTU: HSSR 5

3 Convex Decomposition

A method similar to [27, 31] is employed for decomposing the shape into approximately
convex parts. The two step process involves first, finding pairs of points, called mutex pairs,
which cannot belong to the same convex part. Then, finding cutting planes that divide the
shape into parts that have no mutex pairs. Given a shape S={X | X ∈ R3}, we find the set
M ={(x,y) | x,y∈ S and x, y are mutually exclusive} and set of planes P that divide the shape
into approximately convex parts.

3.1 Mutex pairs

Points x ∈ S,y ∈ S are said to be mutually exclusive if there exists a plane p such that x,y lie
on p and are disconnected in the contour map produced by the projection of shape S onto p.
Two points x,y on the contour map are said to be connected if there exists a path c from x
to y such that distance between any adjacent points along the path c is not greater than the
connected-component threshold t and all the points along the path c are at the same distance
from p. To find mutually exclusive points, let Q be a set of planes with normals that are
evenly sampled from a unit hemisphere. Then, for each plane pi in the set Q, a function
fi(S) is defined that projects S onto pi and bins the distances from S to pi to find the contour
map. Connected components that are at the same distance from pi are then estimated. C j

di is
the jth connected component at distance d from the plane pi, ndi is the number of connected
components at distance d from plane pi. mutex pairs are then given by

M = {(X ,Y ) | X = f−1
i (x),Y = f−1

i (y)}
(x,y) = argmin

x∈Cu
di, y∈Cv

di

||x− y|| (7)

where, i = 1 to |Q|, di ∈ {distances f rom pi}, u = 1 to ndi, v = 1 to ndi and u 6= v. There
might be more than two connected components for a given distance d and plane pi. In
such cases, a mutex pair is deleted if the projection onto pi of the path joining the pair
passes through a connected component other than the ones the pair belong to. This can be
determined by checking if there exists points on the plane that are on either side of the line
segment and belong to the same connected component. A weight wi is associated with each
mutex pair Mi. Let p1 be the plane passing through the pair Mi that classified them as mutex.
Consider the plane p2 which also passes through the pair Mi and is perpendicular to p1. If
the pair is connected in the contour map m produced by projecting S onto p2 then, wi is
measured as the maximum local curvature of the connected component containing the pair
Mi on m else, wi is set to zero. If repeated pairs exist in M then the one with the maximum
associated weight is retained and the rest removed. It has to be noted that (X ,Y ) is the same
as (Y,X) and that a pair of points may also be classified as mutually exclusive by multiple
planes passing through them.

3.2 Cutting Planes

Given set M of mutex pairs, we wish to find planes that divide the shape into parts that have
no mutex pairs. For each mutex pair a candidate cutting plane is defined as a plane that
bisects the pair and has its normal parallel to the pair. The set of candidate planes are then
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given as,

CP = {Pi ∈ R4 | Pi(1 : 3) · ( Xi−Yi
||Xi−Yi|| ) = 1, Pi · [ (Xi−Yi)

2 | 1] = 0, (Xi,Yi) ∈M }. (8)

This set of planes guarantee a subdivision of the shape into parts that have no mutex pairs.
The goal is to find the set of cutting planes P ⊂ CP with the minimum number of planes
required to remove all mutex pairs. The hybrid shape model described in section 3 can
accurately model approximately convex objects. Increasing the number of small parts results
in representation that is no longer compact. The following heuristics are defined to find a
balance between accuracy and compactness of the shape model: 1) The cut reduces the total
non-convexity of the shape; 2) The cut results in parts where at least one is likely to contain
no mutex-pairs.

The first heuristic effects the accuracy of the representation while the second effects the
compactness. Formally, a plane Pi splits S into two parts L1 and L2, let D be the set of indices
of mutex pairs that are cut by Pi, ML1 and ML2 be the mutex pairs that remain in L1 and L2
respectively. The utility of splitting the shape by a plane Pi is defined as

U(Pi) = (1− min(|ML1 |,|ML2 |)
max(|ML1 |,|ML2 |)

)× ∑
j∈D

[w j× (Pi(1 : 3) · X j−Y j
||X j−Y j || )]

Pc = argmax
Pi∈CP

U(Pi).

(9)

The plane Pc with most utility is selected to split the shape S. This process is recursively
repeated on each of the divided parts until all the mutex pairs are removed.

4 Model fitting and shape reconstruction
Given a shape as point cloud or a mesh, the method to build the hierarchical-hybrid shape
representation is as follows. The input point cloud is decomposed into approximately convex
parts using the method described in section 3. The goal is to have a compact but accurate
shape representation. So additional conditions are added to stop the recursive decomposition
of the shape. The decomposition is stopped if the average non-convexity of the mutex pairs
in the part falls below the non-convexity threshold t1. The process is also stopped if the
size (measured as the volume of the bounding box) of the part falls below the size t2. The
decomposed parts are modeled using the shape model described in section 2.1. The parts
that are small or could not be accurately fit with shape model, i.e., parts with fitting error
greater than error-threshold t3 are retained as points or meshes. During the decomposition
step, each intermediate node of the tree holds the cutting plane and the 2D intersection shape
that is given by the points of the shape that intersect the cutting plane. This 2D intersection
shape is modeled using the 2D counterpart of the shape model described in section 2.1.

The explicit form of each shape model, leaf nodes in our tree representation, can be used
to generate surface of the part it models. These parts must then be stitched together to form
the entire shape. Blending of these parts is done in a bottom up fashion. To blend two parts
we make use of the plane that split the two parts and the 2D intersection shape described
above. We discard the region of both parts that lies within d distance from the cutting plane.
This creates an empty region at the union of these parts. To fill this empty region we find
corresponding points in each part that lie nearest to each other in their projections on the
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Algorithm 1 Construct HHSR
1: procedure CONSTRUCTHHSR(Shape, t1, t2, t3)
2: if size(Shape)< t2 then
3: return Shape
4: [mutexs,weights]← GetMutex(Shape)
5: if sum(weights)> t1 then
6: [Part1,Part2,cut]← DecomposeShape(Shape,mutexs,weights)
7: Node.Le f t←ConstructHHSR(Part1, t1, t2, t3)
8: Node.Right←ConstructHHSR(Part2, t1, t2, t3)
9: Node.Cut← cut

10: return Node
11: else
12: [ShapeModel,error]← FitShapeModel(Shape)
13: if error > t3 then
14: return Shape
15: else
16: return ShapeModel

Algorithm 2 Construct Shape
1: procedure CONSTRUCTSHAPE(Node)
2: if isLeafNode(Node) then
3: return GenerateShape(Node)
4: Shape1←ConstructShape(Node.Part1)
5: Shape2←ConstructShape(Node.Part2)
6: return MergeShape(Shape1,Shape2,Node.Cut)

cutting plane. These points and their closest point on the 2D intersection shape are used as
control points to fit a Bezier curve. This yields a smooth transition between the components
of the shape.

5 Experiments and Results
To show that the representation can compactly and accurately model complex shapes, we
conducted experiments on the Stanford bunny which had approximately 8000 points. For
finding mutually exclusive points, the distance threshold for connected components was set
to 3 mm. The non-convexity threshold to stop the decomposition of the shape was set to 5%
of the total non-convexity. The shape model fitting error threshold was set to 7mm. The final
representation had 937 parameters and the mean error was 1.5mm. We show the process of
fitting the shape representation to the data Fig. 1.

We also conducted experiments on shapes of Prostate and Liver. The shape of the prostate
was extracted from manually segmented T2-weighted 3D MR images. All the shapes were
first smoothed and aligned to each other. Shapes of liver was extracted from manual seg-
mentation of CT images [33]. To fit our shape representation, for both the shapes, we set the
connected component threshold to 5 mm, non-convexity threshold to 0 and the decomposed
part size threshold to 0. The shape model fitting error threshold was set to 10% of the longest
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(a) (b) (c)

Figure 1: Fitting our shape model to Stanford Bunny (8454 vertices): (a) Mutually Exclusive
pairs of points shown as red lines; (b) Approximate convex decomposition, parts shown
inside red box; (c) Shown in Red is HSSR fit, ground truth boundary points are shown in
White and Green arrow points to the part that was retained as points due to large error of fit
of the shape model.

side of the shape.
We added 3 additional scale parameters to the shape model. This allowed each octant

of the shape to have different scale parameters. An additional optimization using the LM
method was added to the previously described ESQ fitting algorithm to solve for these scale
parameters. We use only a subset of the input points for fitting ESQ to speed up the fitting
process. The graph in Fig. 2(d) shows the effect of number of points used on the accuracy of
ESQ fit. We see that the number of points used to fit ESQ to the data has negligible effect on
the mean error. Fig. 2(a), 2(b), 2(c) show the effect of number of points used for fitting on the
ESQ parameter values, which is negligible. We could achieve roughly the same parameter
values from 925 points and from 125 uniformly sampled points.

We compared the compactness and accuracy of our representation with spherical har-
monics representation of the shape,[34] and RBF iso-surface which is fit using method de-
scribed in[32]. To fit RBF iso-surface we used a greedy approach and iterated over the
number of control points and stopped when the error was comparable to the error of HHSR.
Table 1 shows the results.

Prostate

Method Mean Error (in mm) Number of Parameters
HSSR(ours) 0.152 ± 0.067 303-337
RBF iso-surface [32] 0.222 ± 0.041 1536
Spherical Harmonics [34] 0.539 ± 0.405 1089

Liver

Method Mean Error (in mm) Number of Parameters
HSSR(ours) 1.116 ± 0.212 788-989
RBF iso-surface [32] 3.028 ± 0.296 4952
Spherical Harmonics [34] 8.265 ± 2.22 4225

Table 1: Mean fitting error and number of parameters used for 45 prostate shapes and 10
liver shapes using different methods of shape representation. HSSR has more accurate fit
with fewer parameters

From Table. 1, our HSSR shape model has much smaller error than the other two meth-
ods, while using much smaller number of parameters (≈20% of RBF iso-surface and less
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(a) (b)

(c) (d)

Figure 2: Effect of the number of points used to fit ESQ. (a) Effect on the shape parameter
ε1 which is a function of elevation; (b) Effect on the shape parameter ε2 which is a function
of azimuth; (c) Effect on the 6 size parameters; (d) Effect of the number of points used on
accuracy of ESQ fit. Each curve represents a sample shape

than 30% of Spherical Harmonics on prostate). Our model enjoys an increasing benefit
when the shapes get more complex, as indicated in the liver data. The variation in the num-
ber of parameters required to fit the shapes indicates the variations in shapes of the organs.
We can notice from Fig. 3 that our shape models fit the ground truth of Prostate and Liver
well.

The shape model used has both implicit and explicit forms. The implicit form can also
function as an inside/outside function and can be used to test if a point is within or outside
the shape. Using HHSR, this test can be performed by first finding the section of the shape
that the point lies. This is done by testing it with the intersection planes at each level of the
tree. Once the position of the point in the tree is determined, the implicit form of the shape
model can be used to test where the point is with respect to the shape. In cases where the
point lies close to the intersection plane, the implicit form of intersection shape is used. This
is especially useful for image guided interventions. Given the trajectory of a surgical device,
this inside/outside test can be used to determine the region of the organ the device will come
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(a) (b) (c) (d) (e) (f) (g)

Figure 3: Shape representation for Prostate and Liver shapes. (a) Prostate split into approx-
imately convex parts; (b), (c) and (d) are axial, sagittal and coronal views of prostate. (e)
Points generated from shape model that was fit to each split part of a liver shape. (f) and (g)
are different view of the same liver shape. Red represents the mesh generated form HSSR.
Shown in White are the ground truth organ boundary points.

in contact with, using the bisection method recursively for the points that lie on the trajectory
of the device. In each recursion the part of the trajectory that is completely inside the shape
can be removed (Fig. 4).

Figure 4: Intersection of an arbitrary line with the surface of the shape, the point of intersec-
tion is shown in green.

6 Conclusion

In our work we present a hybrid shape model which has both implicit and parametric forms
and can model a wide range of shapes. An automatic method to fit this shape model to com-
plex medical shapes by hierarchically dividing the shape into approximately convex parts is
also presented. Finally, we also present a method to blend the hybrid representation of the
parts to reconstruct the entire shape. We show that the HSSR is able to compactly and accu-
rately model complex medical shapes. We show that the representation can be used to guide
surgical procedures by providing the ability to track surgical device trajectory with respect
to the shape.
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