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Recently, shape analysis has become of increasing interest in the medical
community due to its potential in capturing the morphological variations
across a population. The high quality 3D images captured can be used to
extract 3D shape of the organs. 3D models of organs can also be used for
training personnel, for visualization during image guided interventions
and in simulations. A compact shape model that has implicit and explicit
forms will aid in some of these medical use-cases.

We propose a compact hybrid shape model as a combination of Ex-
tended Superquadrics (ESQ) [1] and Radial basis interpolation function
(RBF). The hybrid shape model in its parametric form is given as ( f (θ ,φ)=
h(θ ,φ)+g(θ ,φ)). h is the extended superquadric function and g is radial
basis interpolation function. The points on the surface of the shape are
given by

(X ,Y,Z) = f (θ ,φ)

X = a× sign(cosθcosφ)|cosθ |ε2 |cosφ |ε1 + r.cosθcosφ

Y = b× sign(sinθcosφ)|sinθ |ε2 |cosφ |ε1 + r.sinθcosφ

Z = c× sign(sinφ)|sinφ |ε1 + r.sinφ

−π/2≤ θ ≤ π/2,−π ≤ φ ≤ π.

(1)

Constants a, b and c give the extent of the ESQ. Exponents ε1 and ε2
are the shape parameters of the ESQ. The exponents are functions of
θ (azimuth) and φ (elevation) respectively, modeled using cubic splines.
Offset r is a function of both θ and φ , modeled by RBF. An ESQ at an ar-
bitrary position also has translation and rotation parameters. The implicit
representation of the shape model is given as
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λ is a Gaussian with compact support, d j is the cosine distance from the
jth RBF center, w j is a weight associated with jth RBF center.

To handle concavities in the shape we propose to hierarchically divide
the shape into approximately convex parts [2, 3]. The two step process
involves first, finding pairs of points, called mutex pairs, which cannot
belong to the same convex part. Then, finding cutting planes that divide
the shape into parts that have no mutex pairs. Given a shape S, points
x ∈ S,y ∈ S are said to be mutually exclusive if there exists a plane p
such that x,y lie on p and are disconnected in the contour map produced
by the projection of shape S onto p. A weight is associated with each
mutex pair which is a measure of concavity of the shape between the pair
of points. For each mutex pair a candidate cutting plane is defined as
a plane that bisects the pair and has its normal parallel to the pair. The
following heuristics are defined to find the minimum number of cutting
planes required to remove all mutex pairs: 1) The cut reduces the total
non-convexity of the shape; 2) The cut results in parts where at least one
is likely to contain no mutex-pairs.

Given a shape as point cloud or a mesh, the method to build the
hierarchical-hybrid shape representation is as follows. The input point
cloud is hierarchically decomposed into approximately convex parts. The
hybrid shape model is then fit to each of parts. LM method for non-linear
least square fit is used to minimize the error of fit function derived from
the implicit form of the shape model. The error of fit for a point P is de-
fined as the distance from point P to a point Q on the ESQ surface such
that P−O= β (Q−O) where O is the center of the ESQ. The EoF is given
as,

EOF =
Ndata

∑
i=1
||(xi,yi,zi)||× |1−F (xi,yi,zi)

ε1/2 |+C1 +C2 +C3 (3)

Additional constraints C1, C2 and C3 on the parameters of ESQ are also
added to the EoF.

A binary tree is used for the shape representation. Each node in the
tree represents a part of the shape. The intermediate nodes contain links
to its constituent parts and holds the 2D shape of intersection between its
constituent parts. The leaf nodes contain the hybrid shape representation
of the part.

To reconstruct the shape, a bottom up approach is employed. The ex-
plicit form of the shape model is used to generate points/meshes for each
part. The 2D intersection shape is then used to blend the parts together.
Fig. 1 and Fig. 2 show fitting of the shape representation to data.

(a) (b)
Figure 1: Fitting our shape model to Stanford Bunny (8454 vertices):
(a) Approximate convex decomposition, parts shown inside red box; (b)
Shown in Red is HSSR fit, ground truth boundary points are shown in
White and Green arrow points to the part that was retained as points due
to large error of fit of the shape model.

(a) (b) (c) (d)
Figure 2: Shape representation for Prostate shape. (a) Prostate split into
approximately convex parts; (b), (c) and (d) are axial, sagittal and coronal
views of prostate. Red represents the mesh generated form HSSR. Shown
in White are the ground truth organ boundary points
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