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Abstract

Introducing suitable features in the scribble-based foreground-background (Fg/Bg)
segmentation problem is crucial. In many cases, the object of interest has different re-
gions with different color modalities. The same applies to a non-uniform background.
Fg/Bg color modalities can even overlap when the appearance is solely modeled using
color spaces like RGB or Lab. In this paper, we purposefully discriminate Fg scribbles
from Bg scribbles for a better representation. This is achieved by learning a discrimina-
tive embedding space from the user-provided scribbles. The transformation between the
original features and the embedded features is calculated. This transformation is used to
project unlabeled features onto the same embedding space. The transformed features are
then used in a supervised classification manner to solve the Fg/Bg segmentation problem.
We further refine the results using a self-learning strategy, by expanding scribbles and re-
computing the embedding and transformations. Finally, we evaluate our algorithms and
compare their performance against the state-of-the-art methods on the ISEG dataset with
clear improvements over competing methods.

1 Introduction
Interactive image segmentation problem has gained a lot of interest from computer vision
researchers. Unlike the regular image segmentation problem, the user provides additional
constraints that guide the segmentation process. In some algorithms, like [3, 9, 18, 20], the
user provides scribbles on Fg/Bg regions. In other algorithms, like [13, 17, 22], the user
is required to provide a bounding box or an enclosing contour to surround the Fg object,
other outside pixels are constrained to be Bg. A recent study on the different forms of
user guidance to the interactive image segmentation problem can be found in [11]. In our
problem, we consider scribbles as the form of user provided annotation.

The problem formulation of interactive segmentation benefits from the labels. This leads
to two generic categories of algorithms, namely region growing like [1, 15] and graph-based
solutions like [3, 14, 17, 20].

In figure 1 we illustrate the motivation for this paper. Color features usually cannot
capture different modalities available in the scribbles and successfully distinguish Fg from
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Figure 1: The effect of discriminative embedding. Left (a): Image with provided user scribbles;
red for Fg and blue for Bg. Middle (b): 3D plot of the RGB channels for the provided scribbles.
The scribbles are mixed in the RGB color space. Right (c): 3D plot of the first 3 dimensions of our
discriminative embedding. Color modalities present in the scribbles are preserved. Note that the Fg
has two modalities, namely skin color and jeans. Also, the Bg has two modalities: the sky and horse
body.

Bg at the same time. As we can see in figure 1(b), the RGB color space will eventually
mix Fg/Bg scribbles. On the other hand, figure 1(c) shows that a well-defined embedding
space can clearly distinguish between Fg and Bg scribbles, while preserving different color
modalities within each scribble.

In this paper, we present an approach for representing Fg/Bg scribbles in a way that com-
bines the appearance and class label disambiguation. We first extract pixels’ color features
using standard color spaces, namely RGB and Lab. Next, we weight pixels’ features by the
geodesic distance to the nearest Fg scribble and Bg scribble respectively. Later, we learn a
discriminative embedding space for the scribbles using a supervised dimensionality reduc-
tion technique, like LDA [7, 8] or LFDA [19]. We transform pixels’ features by projecting
them onto the new embedding space. Finally, we classify every pixel as Fg or Bg based on
its embedding coordinates. To enhance the classification, we use an iterative version which
expands the original scribbles and recomputes the whole pipeline until a stopping criterion is
met. A final post processing step is used to remove small islands as done in [14]. Our meth-
ods are proved to outperform state-of-the-art algorithms on the standard ISEG dataset [9].

Our contributions in this paper are multifold; First, we present a novel representation of
image features in the scribble-based Fg/Bg segmentation problem. Second, we utilize this
representation in two novel interactive segmentation algorithms: (i) One-pass supervised
algorithm in section 3.3, which we extend to (ii) a self-learning semi-supervised algorithm
in section 3.4. Third, we present an extensive evaluation on a standard dataset with clear
improvements over state-of-the-art algorithms.

2 Related Work
Color Features: Many algorithms in the literature base their solution for Fg/Bg segmen-
tation on color features. From the region growing family, the seeded region growing algo-
rithm [1] iterates to assign a pixel to its nearest labeled point based on color distance. In
MSRM [15], color histograms are built on top of pre-computed superpixels and the unla-
beled regions are merged to similar labeled regions using the Bhattacharyya coefficient as
a similarity measure. Color features are also utilized in the graph cut family. For example,
in GrabCut [17] multiple color Gaussian Mixture Models are introduced for both the fore-
ground and the background. An iterative procedure that alternates between estimation and
parameter learning is utilized.
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Geodesic Distance: Using Geodesic distance proved to be useful in interactive image seg-
mentation. Many approaches like [2, 5, 9] define the geodesic distance between two points,
dg(a,b), to be the smallest integral of a weight function over all possible paths from a to b.
Hence, unlike Euclidean paths, geodesic paths can bend and take any arbitrary shape. This
property is suitable for image segmentation since the boundaries of an object can take any
arbitrary shape as well. We follow the same notation presented in [9], which first defines the
length of a discrete path L(Γ) as:

L(Γ) =
n−1

∑
i=1

√
(1− γg)d(Γi,Γi+1)2 + γg‖ OI(Γi) ‖2 (1)

where Γ is an arbitrary parametrized discrete path with n pixels given by Γ1,Γ2, · · · ,Γn,
d(Γi,Γi+1) is the Euclidean distance between successive pixels, and the quantity ‖ OI(Γi) ‖2

is a finite difference approximation of the image gradient between the points (Γi,Γi+1). The
parameter γg weights the Euclidean distance with the geodesic length. The geodesic distance
between two points, dg(a,b), is then defined as:

dg(a,b) = min
Γ∈Pa,b

L(Γ) , Γa,b = arg min
Γ∈Pa,b

L(Γ) (2)

where Pa,b denotes the set of all discrete paths between two grid points a and b. The above
definition of geodesic distance between two points extends to distance between a set of points
c, namely user scribbles, and a point p exactly as in [5].

Linear Dimensionality Reduction: Methods of linear dimensionality reduction are used to
produce a lower dimensional representation of the feature points. For example the Principal
Component Analysis(PCA) [12] tries to minimize the after projection reconstruction error
by projecting the data on the directions of larger variance. Locality Preserving Projections
(LPP) [10] tries to embed the close features in the original feature space into close embed-
ded features. Despite the effectiveness of PCA and LPP as unsupervised dimensionality
reduction algorithms, both do not benefit from existing labels.

In many applications, the data is labeled or partially labeled and hence supervised meth-
ods for dimensionality reduction seek to maximize the between-class separation, while mini-
mizing the within-class proximity, like linear discriminant analysis (LDA) [7, 8] and its vari-
ants [19, 23, 24, 25]. A special variant of LDA is the LFDA algorithm by Sugiyama [19].
In LFDA, the embedded coordinates will be like LPP, as it preserves the locality of features
that belong to the same class while maximizing the between-class separability like LDA.

3 Approach

3.1 Supervised Dimensionality Reduction Using LDA and LFDA
Formulation: We follow the formulation of [19] for supervised dimensionality reduction.
Let xi ∈ ℜd(i = 1,2, · · ·n) be d-dimensional samples and yi ∈ {1,2, · · ·c} be the associated
class labels, where n is the number of samples and c is the number of classes. Let ni be the
number of samples in class i. Let X be the data matrix: X = (x1|x2|...|xn). Let zi ∈ℜm(1≤
m ≤ d) be the embedded samples, where m is the dimensionality of the embedding space.
We are seeking to find a d×m transformation matrix T , such that zi is given by:

zi = T T xi (3)
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Linear Discriminant Analysis (LDA): The objective of LDA embedding is to find a trans-
formation matrix T . The matrix T best transforms the original features X into new coordi-
nates Z to discriminate embedded features of predefined classes. To obtain such a transfor-
mation matrix, a between-class scatter matrix, Sb, and a within-class scatter matrix, Sw, are
defined as:

Sb =
c

∑
k=1

nk(µk−µ)(µk−µ)T , Sw =
c

∑
k=1

∑
i∈Ck

nk(xi−µk)(xi−µk)
T (4)

where µk is the sample mean of class Ck and µ is the sample mean of all the features. The
transformation matrix T is then defined as:

T = arg max
T∈ℜd×m

tr((T T SwT )−1T T SbT ) (5)

The matrix T is constructed by concatenating the generalized eigen vectors corresponding to
the largest m generalized eigen values of the problem Sbv = λSwv

Local Fisher Discriminant Analysis (LFDA): The objective of LFDA is similar to that of
LDA. It looks for a transformation matrix Tl . In addition to the separation between different
classes, the transformation matrix Tl is sought to preserve the locality in each of the classes.
This is done by defining the between-class scatter matrix, S′b, and the within-class scatter
matrix, S′w, as:

S′b =
1
2

n

∑
i, j=1

Ab(i, j)(xi− x j)(xi− x j)
T , S′w =

1
2

n

∑
i, j=1

Aw(i, j)(xi− x j)(xi− x j)
T (6)

where

Ab(i, j) =

{
Wi j(

1
n −

1
nc
) if yi = y j = c, x j ∈ N(xi)

0 otherwise
,Aw(i, j) =

{
Wi j
nc

if yi = y j = c, x j ∈ N(xi)

0 otherwise
(7)

Wi j represents the affinity between points xi and x j. The sample x j ∈ N(xi) if x j is one of the
k-nearest neighbors of xi or vise versa in the same class c. The transformation matrix Tl is
defined as:

Tl = arg max
Tl∈ℜd×m

tr((Tl
T S′wTl)

−1Tl
T S′bTl) (8)

Similarly, the matrix Tl is constructed by concatenating the generalized eigen vectors corre-
sponding to the largest m generalized eigen values of the problem S′bv = λS′wv.

3.2 Color-Geodesic Features
The first step in our approach to interactive image segmentation is to transform the original
feature vector xi of every pixel i into a new feature vector zi in the embedding space. Thus,
we start by defining our original space pixels’ features xi. For each pixel, we extract both the
RGB and Lab channels. We normalize each of these 6 channels to be between [0,1]. Then,
we aim to weight this color vector based on the pixels’ geodesic distance to Fg scribbles, such
that pixels geodesically close to Fg scribbles would have higher weight. This is achieved by,
first, computing the geodesic distance of all pixels to Fg scribbles. Then, normalizing the
distance to be between [0,1]. Finally, we define our Fg distance weighting of pixel pi to
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Figure 2: The effect of weighting color channels. Left: Original image with the Fg scribble Middle:
Manhattan distance weights with respect to the Fg scribble; red means higher weight and blue means
lower weight. Right: Geodesic distance weights with respect to the Fg scribble.

be wi = 1−normalized(GeoDist(pi, Fg)). So, we obtain 6 color channels that represent RGB
and Lab values, weighted by their geodesic distance to Fg scribbles. We apply the same
procedure but for Bg scribbles, and we concatenate the Fg and Bg weighted color vectors
to get our original space feature vector xi ∈ℜ12. Figure 2 shows the effect of weighting the
RGB color channels using geodesic distance to the closest Fg scribble.

In the next two sections, we show how to use the defined feature vector xi in our Multi-
Modality Feature Transform approach for interactive image segmentation.

Algorithm 1 One-Pass MMFT Classification
INPUT: Image I, scribble masks FgMask and BgMask, K
OUTPUT: Labels vector y for every pixel

1: Compute the data matrix X according to section 3.2
2: Extract scribble data matrix Xscr and yscrfor pixeli ∈ FgMask or pixeli ∈ BgMask
3: Calculate the Transformation Matrix Tl using equation 8
4: Compute the transformed coordinates Z = T T

l X
5: for all zi ∈ Z do
6: find the nearest K features that have y = Fg and compute DaverageFg
7: find the nearest K features that have y = Bg and compute DaverageBg
8: compute DistRatioi = log(DaverageFg/DaverageBg)
9: if DistRatioi < 0 then

10: yi = Fg
11: else
12: yi = Bg
13: end if
14: end for
15: Apply post processing on y as in [14]

3.3 One-Pass Multi-Modality Feature Transform (O-MMFT)
In this section, we introduce our one-pass MMFT algorithm 1, which is a supervised Fg/Bg
classification algorithm. It starts with feature extraction, as in 3.2, to compute the d×n data
matrix X , where d is the dimensionality of pixels’ feature vector, xi, and n is the number
of pixels. Next, we select labeled pixels l = lFg ∪ lBg to define a d× l scribble data matrix
Xscr. We apply a supervised dimensionality reduction algorithm to obtain the transformation
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matrix Tl using equation 8. We compute the transformed embedding coordinates for the data
matrix X to find Z. We then apply a Nearest Neighbor search strategy to classify unlabeled
features, in the transformed coordinates, into Fg/Bg classes; we find the closest k labeled
features from Fg and average the distance to these k features. We do the same with respect
to Bg features. For each pixel, the smaller average distance will denote the class label.

3.4 Iterative Multi-modality Feature Transform (I-MMFT)

We proceed to introduce our second algorithm 2, which is a self-learning semi-supervised
Fg/Bg classification algorithm. In self-learning [4], a classifier is initially constructed using
a labeled set, then its accuracy is enhanced by adding more data from the unlabeled set. Our
initial classifier in this case is the O-MMFT 1. To manage the stopping criteria, we add two
constraints: first, we do not exceed five iterations; second, we do not allow the matrix Xscr to
exceed a predefined MaxProblemSize, which we set to 8000 points. These two constraints
are used to maintain real time performance. In figure 3, we show examples to illustrate the
improvements of the Iterative MMFT algorithm over its one-pass counterpart.

Algorithm 2 Iterative MMFT Fg/Bg Classification
INPUT: Image I, FgMask, BgMask, K, MaxIter, MaxProblemSize
OUTPUT: Labels vector y for every pixel

1: Set DistRatioOldi = zero∀i; Set Iter = 1
2: repeat
3: Compute the data matrix X according to section 3.2
4: Extract scribble data matrix Xscr and yscrfor pixeli ∈ FgMask or pixeli ∈ BgMask
5: Calculate the Transformation Matrix Tl using equation 8
6: Compute the transformed coordinates Z = T T

l X
7: for all zi ∈ Z do
8: find the nearest K features that have y = Fg and compute DaverageFg
9: find the nearest K features that have y = Bg and compute DaverageBg

10: compute DistRatioi = DistRatioOldi + log(DaverageFg/DaverageBg)
11: if DistRatioi < 0 then
12: yi = Fg
13: else
14: yi = Bg
15: end if
16: end for
17: Update FgMask and BgMask with most confident features.
18: Iter = Iter+1;ProblemSize = SizeFgMask+SizeBgMask;
19: DistRatioOld = DistRatio
20: until MaxIter is reached or MaxProblemSize is reached
21: Apply post processing on y as in [14]
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Figure 3: Comparison between O-MMFT and I-MMFT. Left and Middle-Right: Result using O-
MMFT. Middle-Left and Right: Result using I-MMFT.

4 Experiments

In this section, we show the effectiveness of our novel features and algorithms. We start
by presenting two control experiments on the One-pass Multi-Modality Feature Transform
(O-MMFT) algorithm 1. The first experiment demonstrates the effect of changing the trans-
formation dimensionality m in the LFDA embedding step of our O-MMFT approach. The
second experiment demonstrates the effect of the Geodesic weighting on color channels.
Finally, we compare our algorithms to the state-of-the-art methods both quantitatively and
qualitatively.

Dataset: To evaluate our Multi-Modality Feature Transform (MMFT) approach quantita-
tively, we use the Geodesic Star-Dataset [9]. The dataset is a well known scribble-based
interactive image segmentation benchmark. It exhibits different variations, since it comes
from a collection of different datasets. It consists of 151 images: 49 images taken from the
GrabCut dataset [17], 99 from the PASCAL VOC dataset [6], and 3 images from the Alpha
matting dataset [16]. For every image, the dataset simulates a user input in the form of an
image containing four user scribbles. These four fixed scribbles are divided into one fore-
ground and three background scribbles.

Evaluation Measure: We use Jaccard Index (overlap ratio) as a measure of accuracy of
different segmentation algorithms. Jaccard Index is used to evaluate segmentation quality in
the VOC segmentation challenge [6].

4.1 Control Experiments

Effect of dimensionality m in LFDA: One of the key differences between LDA and LFDA
is the rank of the Sb matrix. In case of LDA, it is rank deficient and its rank is equal to the
number of classes (two in our problem). However, this is not the same for LFDA as its S′b
matrix is not rank deficient and might be of full rank. This gives additional flexibility to
using LFDA over LDA since it can produce richer dimensions. We use LFDA as a building
block in our O-MMFT algorithm. Hence, we test the effect of changing the transformation
dimensionality m. We observe in table 1 that the difference in Jaccard index is not significant
and that ensures the stability of our algorithm with respect to the change of transformation
dimensionality.

Effect of Geodesic Weighting: We choose different combinations of color features and
distance weighting methods. Possible color features are RGB and Lab features. Possible
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Figure 4: An example of the impact of Geodesic weighting on the O-MMFT segmentation result.
Left: Image with provided user scribbles; green for Fg and red for Bg. Middle: Segmentation output
in case of no Geodesic weighting on pixels’ features. Right: Segmentation output in case of weighting
pixels’ features by their Geodesic distance to Fg and Bg scribbles.

LFDA Transformation Dimension Jaccard Index
3 0.655
6 0.664
9 0.662

12 0.660
Table 1: Role of changing m in LFDA for our O-MMFT algorithm

distance weighting methods are the proposed procedure in section 3.2 and the basic distance
transform using Manhattan distance.1 Table 2 shows that best results are obtained via the
procedure proposed in section 3.2. Incorporating geodesic weighting improved the segmen-
tation accuracy from 0.413 to 0.664. Figure 4 shows an example of how Geodesic weighting
affects the segmentation result in our approach. One-pass MMFT approach reaches best re-
sults with the following settings: 6 dimensions LFDA transformation, and geodesic weight-
ing over Lab and RGB color models.

Features(weighting) Jaccard Index
Lab(none)+RGB(none) 0.413

RGB(Manhattan) 0.632
Lab(Manhattan) 0.597
RGB(Geodesic) 0.654
Lab(Geodesic) 0.663

RGB(Geodesic) + Lab(Geodesic) 0.664
Table 2: Role of the geodesic weighting. Results are obtained using O-MMFT with m = 6

4.2 Comparative Evaluation
We compare our results2 to state-of-the-art methods over the whole ISEG dataset. We present
in table 3 different algorithms, namely Graph-Cut of Boykov and Jolly(BJ) [3], Post pro-
cessing on BJ (PP) [14], Shortest Path (SP-SIG) [2], Geodesic Star Convexity (GSC) [9],
Euclidean Star Convexity (ESC) [21] and Seeded Laplacian (SL) [20]. We show the effect
of the feature transformation in comparison to the state-of-the-art methods. The transfor-
mation methods produce better results than competing algorithms. In addition, both our

1We use the MATLAB function bwdist on the binary Fg and Bg scribble mask images.
2The MATLAB source code is available on the author’s webpage.
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Method Jaccard Index
BJ [3] 0.496 ± 0.261

PP [14] 0.593 ± 0.255
GSC [9] 0.615 ± 0.257
ESC [21] 0.610 ± 0.249

SP-SIG [2] 0.622 ± 0.171
SL [20] 0.670 ± 0.18

Transformation Method Jaccard Index
No transformation 0.549 ± 0.260

O-LDA 0.627 ± 0.179
I-LDA 0.636 ± 0.180

O-MMFT 0.664 ± 0.184
I-MMFT 0.678 ± 0.180

Table 3: Quantitative comparison with state-of-the-art algorithms

O-MMFT and I-MMFT algorithms outperform the O-LDA and I-LDA. This result confirms
our intuition about the importance of preserving the locality within each of the Fg/Bg classes.

In figure 5, we show a qualitative comparison between our iterative-MMFT approach
and the state-of-the-art. The qualitative results reflect the improvements achieved using our
novel approach.

5 Conclusion

In this paper, we presented a novel approach to define suitable features for the interactive
image segmentation problem. To learn these features, we transformed the Geodesically
weighted color features to an embedding space using a supervised dimensionality reduc-
tion technique. Several advantages were gained due to this transformation: First, features of
different classes are separated from each other. Second, features from the same class with
the same modality are transformed close to each other. Third, the transformation does not
restrict features of the same class with different modalities to be close. These three advan-
tages allowed us to use a simple classification procedure in the O-MMFT algorithm that
we proposed. We enhanced the results using a self-learning strategy that we refer to as the
I-MMFT algorithm. Our control experiments emphasized the effect of several factors like
the Geodesic weighting and the dimensionality choice for our algorithms. Our compara-
tive evaluation experiments showed that, using the MMFT algorithm, we can do better than
state-of-the-art algorithms that use shape constraints [9, 21] while we do not.
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Figure 5: Qualitative results for 7 out of 151 images. The first column shows the original image with
user scribble annotation. The rest of columns shows the segmentation results using SP-SIG, GSC, PP,
I-MMFT methods respectively.
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