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Abstract

The Multiple Instance Learning (MIL) framework has been extensively used to solve
weakly labeled visual classification problems, where each image or video is treated as a
bag of instances. Instance Space based MIL algorithms construct a classifier by modi-
fying standard classifiers by defining the probability that a bag is of the target class as
the maximum over the probabilities that its instances are of the target class. Although
they are the most commonly used MIL algorithms, they do not account for the possibil-
ity that the instances may have multiple intermediate concepts, and that these concepts
may have unequal weighting in predicting the overall target class. On the other hand,
Embedding-space (ES) based MIL approaches are able to tackle this issue by defining a
set of concepts, and then embedding each bag into a concept space, followed by train-
ing a standard classifier in the embedding space. In previous ES based approaches, the
concepts were discovered separately from the classifier, and thus were not optimized for
the final classification task. Here we propose a novel algorithm to estimate concepts and
classifier parameters by jointly optimizing a classification loss. This approach discovers
a small set of discriminative concepts, which yield superior classification performance.
The proposed algorithm is referred to as Joint Clustering Classification for MIL data
(JCZMIL) because the discovered concepts induce clusters of data instances. In com-
parison to previous approaches JC2MIL obtains state-of-the-art results on several MIL
datasets- Corel-2000, image annotation datasets (Elephant, Tiger and Fox), and UCSB
Breast Cancer dataset.

1 Introduction

Many early approaches to visual classification were based on extracting a global descriptor,
followed by learning a classification function using training labels [19, 20]. Since these
methods describe an image/video as a whole e.g. GIST [19] and color histograms [20], they
were often referred to as global representations. These approaches worked well for problems
where the test object (or action) was visually uniform, but performed poorly when there were
large variations in the object class due to factors such as occlusion, viewpoint changes or
visual sub-categories [6, 11, 13]. A possible solution is to use local approaches where each
image or video is represented by a set of localized visual descriptors [5, 6]. For example, as
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shown in Figure 2, a beach scene could be described by instances corresponding to a set of
underlying regions. However, this setting differs from the standard supervised learning case
where a unique class label is provided with each training instance. The only information
available about the beach image is that at least one of the regions inside the beach scene
corresponds to the target class. Since there is incomplete information regarding the class
labels, this setting is often referred to as Weakly Supervised setting.

This setting is common in computer vision since complete human annotation is both
costly and intensive, while labeling an image or video with a single global label is often
more feasible. The data can be structured as a set of bags, each containing many instances,
along with labels indicating the presence/absence of the object of interest in each bag. The
learning problem in this case is referred to as Multiple Instance Learning (MIL) [1, 3]. Most
of the previous MIL algorithms extended standard supervised learning algorithms to the MIL
setting by assuming that the posterior probability of a bag containing a positive target class is
a maximum over the probability of each of its instances. Thus if one of the instances has the
target class with high probability, then the probability of the bag containing that target is also
high irrespective of other instances. We shall refer to this as the max MIL assumption. This
idea has been used to extend several supervised learning algorithms such as boosting [28]
and logistic regression [8], to the MIL setting. Adapting the taxonomy proposed in [1], we
shall refer to these algorithms as Instance Space (IS) based algorithms since they first define
a classification function in the space of instances and extend it to the entire bag using the max
assumption. IS-based MIL methods work well when the positive class can be described by
a single target concept. However, the assumption of a single target concept might be too
restrictive in several vision problems, e.g. a scene may comprise several local regions or an
action may include multiple components. In such cases a bag is composed of heterogeneous
concepts, which may contribute differently towards its classification. Consider the example
of classifying a scene into beach or desert. Examples from both classes contain regions
corresponding to sand and cloud, however in the case of the beach scene both water and
sand must occur together. Moreover, these regions correspond to intermediate concepts that
differ from the target label “beach”.

To tackle the above issues, we focus on Embedding Space (ES) based MIL approaches
[1] that embed each bag into a K-dimensional vector space. The procedure is illustrated
in Figure 2, where a beach scene is represented as a bag of image regions. In this exam-
ple each concept has an associated semantic meaning such as water, clouds or background.
First, a similarity score between each instance and a concept is computed, which produces
a Concept-wise Instance Similarity (CIS) for every instance. In the next step, the sim-
ilarity between the bag and a concept is computed as the max CIS score, using the max
MIL assumption similar to IS-based methods. The likelihood of each concept forms each
dimension of an intermediate vector space, referred to as concept space. In other words,
the set of concept likelihoods for the bag forms the embedding. After embedding each bag
into the concept space, standard classifiers can be used to classify the overall target from the
embedded representation. The concepts can take a number of forms. They could be cluster
centers or dictionary atoms discovered by unsupervised methods such as k-means [5, 6, 9],
or they could be concept prototypes learned by maximizing Diverse Density measure on MIL
data [4, 17, 29]. The concepts induce a clustering of data instances into multiple categories
as shown in Figure 2. This is related to dictionary learning based recognition approaches,
where a dictionary is obtained using unsupervised algorithms. This dictionary is then used
to encode features with the aim of improving recognition rate in the new space [6, 9].

In most previous ES-based approaches, the concepts and the classifier were obtained
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independently. However, isolated learning of the classifier and the set of concepts (or dictio-
nary) may not be optimal for the final classification task since the discovered concepts, which
were optimized for a different objective (such as minimization of inter-cluster distance in k-
means), may induce a concept embedding that is not suited to classification. [9, 16]. We
propose to tackle this problem by introducing a novel ES-based MIL method that jointly
learns the set of concepts and the classifier in a MIL setting. We refer to our algorithm as
Joint Clustering and Classification for Multiple Instance Learning (JCMIL). Our work
makes the following contributions:

1. Proposes a framework to estimate concepts and classifier parameters by jointly opti-
mizing a classification loss on the MIL data.

2. Shows that the current approach is able to yield state-of-the-art results on several MIL
datasets by discovering discriminative concepts. The number of concepts are much
smaller compared to the overcomplete set used in previous ES-based MIL algorithms

[5].

To facilitate a fair comparison with the previous state-of-the-art ES-based MIL approaches
[4, 5, 22], we use a RBF kernel based mapping function. It is also interesting to note that
JCMIL follows the line of recent work on task-driven dictionary learning [16].

2 Related Work

The idea behind IS-based methods is to construct an instance classifier by modifying a super-
vised learning algorithm using the MIL assumptions [1]. A number of algorithms have been
proposed, such as MILBOOST [29], MI-logistic regression [8], MI-SVM [2], MI-Forests
[14]), and used to tackle visual classification problems [23, 26, 27] . IS-based formulation
has also been used to propose a mixture of linear [25, 26] or non-linear classifiers [17, 27]
to solve the MIL problem. Although these algorithms were capable of detecting multiple
concepts, they did not assume that different concepts can contribute differently towards the
label of the bag.

On the other hand, the ES-based MIL algorithms are able to incorporate the above as-
sumption by first embedding each bag into a concept space, followed by learning a standard
classifier in this space [1]. A classic example of ES-based algorithms is the Bag of Words
(BoW) model [6] that maps an image/video into a histogram using an unsupervised dictio-
nary. Popular ES-based MIL approaches are based on the idea of extracting prototype(s) by
maximizing the diverse-density (DD) function [17] on MIL data. The motivation is that a
point with high DD is close to at least one instance inside a positive bag and far away from
every instance in the negative bags. In this way, each prototype can also be identified as a
positive concept. Chen et al. proposed DD-SVM [4] to discover several concepts through
DD function and then used the corresponding concept space with SVM. An improvement
was later proposed over DD-SVM called MILES [5], where the set of concepts included all
the instances in the dataset, and the relevant instances were selected using sparse-SVM. A
recent algorithm, called Dictionary based Multiple Instance Learning (DMIL) [22], learned
a sparse reconstruction based dictionary by maximizing the DD function, and then used the
sparse codes for each instance to embed a bag. Although this algorithm achieved excel-
lent results, DMIL did not have an explicit notion of clustering owing to the use of a single
mapping function for constructing the concept space.
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Figure 1: We illustrate the inherent idea in Embedding Space based MIL approaches. A
beach scene, segmented into regions, is represented as a bag of instances, where each in-
stance is the visual descriptor of the corresponding region. A set of concepts is then used
to calculate a similarity between each instance and the concept, referred to as concept-wise
instance similarity (CIS). The max MIL assumption is used to embed each bag into the con-
cept space using the CIS. Classification can then be performed in the embedding space using
standard classifiers (best viewed in color).

It is also worth mentioning about Bag Space (BS) based MIL algorithms [1] that cal-
culate similarities between bags through kernels such as MI-kernel [10], mi-Graph [30],
followed by the application of a Kernel-based learner such as SVM. These methods usually
assume non i.i.d relationships between instances inside a bag and require the definition of a
distance function. Although these methods have good performance, they are generally not
able to do any instance classification. This paper focuses only on IS-based and ES-based
MIL algorithms that allow both instance and bag classification.

Our work is also related to the recent work on task-driven dictionary learning [9, 16],
where dictionary learning is coupled with the final task e.g. classification. In such a setting it
is possible to achieve a good recognition rate without the use of an overcomplete dictionary
(as in BoW [6] or MILES [5]) since the learned dictionary is already tuned to the final
task. Similar extensions have been proposed in sparse-coding [16], BoW [15]. This work
extends the previous ES-based MIL algorithms by discovering discriminative concepts that
are learned simultaneously with the bag-level classifier.
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3 Joint Clustering and Classification for Multiple Instance
Learning(JC>MIL)

3.1 Model

A MIL dataset is denoted as B = {X;,y;}Y_,, where X; is the i bag, y; € {0,1} is its binary
label' and N is the cardinality of the dataset. Each bag X; consists of N; instances, denoted
as X; = {x; j}]j\il’ where x;; € R4 is a visual descriptor representing an instance. The target
of this work is to jointly learn (1) a set of concepts, that are used to embed each bag into a
concept space, and (2) a classifier that combines the embedding to produce a classification
score for each bag. Our algorithm discovers discriminative concepts by learning them si-
multaneously with the classifier, that requires minimization of the classification loss on the
training data.

The set of concepts is denoted as C = { uk}kK: 1» consisting of K elements (. The sim-
ilarity between the k™" concept and instance x; ; 1s denoted as p;jx. We purposely selected
the RBF kernel, written as p; jx = exp(—%||x;; — | [3), since it was used in several previous
ES-based methods- MILES [5], DD-SVM [4] and DMIL [22]). The CIS for the k" concept
are then used to derive the k" embedding dimension, denoted as @, for the i bag using the
max MIL assumption:

Qi = m]?lXPijk )]

The underlying idea is similar to the Instance based MIL algorithms where the probabil-
ity of a bag is defined as the maximum over the probability of each of its instances. However,
instead of using a single classifier or a concept, the probability is calculated with respect to
multiple concepts. The vector containing the similarity score from all the K concepts for the
i"" bag is denoted as ¢; = {‘])ik}kK:l € RK, which also forms the embedding of the bag in the
concept space. The classification score is then obtained by a linear classifier with parameter
w. In this work we opted for a logistic regression classifier since it is able to provide good
generalization by minimizing a differentiable loss function. The classification score for the
i"* bag is converted to posterior probability, denoted as p;, by using the sigmoid function as
pi=oc(w! ) [18].

3.2 Joint Optimization

We pose the problem as joint minimization of the classification loss with respect to the
concepts and the classifier parameters. The classification loss includes the mean negative
log-likelihood and a regularization term [ 18], and written as:

1 A
L(B) = = ) (ilogp;+ (1 = yi)log(1 = pi)) + S w'w @)
{C*,w*} = argmin L(B) 3)
Cc,w

The above optimization problem is not jointly convex in both C and w, however it is
convex in either while keeping the other variable fixed. Thus the minimization is performed
via coordinate descent approach, where £ is minimized alternatively with respect to both the

! Although the algorithm is formulated for binary classification problems, it can be extended to multiclass prob-
lems by learning one-vs-all binary classifiers.
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variables. Since the original problem is non-convex, the final solution is dependent on the
initialization. During our experiments we found that the initialization of the concepts with
k-means (cluster centers) [7] was able to find relevant clusters and yield good results. The
alternate minimization was performed using the BFGS algorithm, which is faster compared
to gradient descent [21].

The gradient of £ can be easily computed with respect to w (logistic regression [18]). The
gradient of £ with respect to each individual concept i is expanded using the chain-rule of
differentiation as:

a1 a¢l

aﬂk Z,:
- ¢1k
Z — i)Wk EPR

The second expression follows since only the k" dimension of ¢; is dependent on p. ;i
was computed in Equation 1 by taking a maximum over the per instance similarity scores
(piji) for the k" concept. However, the non-differentiability of the maximum function poses
a problem in estimating the above derivative. This problem was solved by using a soft-
max approximation [3]. We used the Generalized Mean (GM) approximation instead of
the frequently used NOR approximation since previously GM has been shown to provide
better performance compared to NOR [3, 23]. As per the GM function, the embedding ¢;;

“

. . 1 . .
is defined using p;jx as ¢y = (Ni Y;p; jk)F, where 7 is a parameter controlling the degree of
approximation. The inner-derivative in Equation. 4 is then written as:

I O r—19Pijk
S Ty =P o

&)

The above derivative can be easily computed to write the derivative of the loss function
with respect to k™ concept (1) as:

JL i Li(pi — 1) 0k =~
= o DR AP Y e (i — xij 6
i N X 5 b =) ©

Computing the above gradient is efficient since it can be written in terms of matrix prod-
ucts. For instance classification, we use the same procedure as introduced in MILES [5].

4 Experiments

To establish the empirical superiority of our proposed method over previous MIL algorithms,
we tested it on five MIL datasets. The number of concepts and the RBF kernel parameter
¥ were tuned by using five fold cross-validation on the training set. The regularization and
Generalized Mean parameter were set to a constant value (A = 1075, r = 15). We found
the algorithm to converge in about 20 iterations of coordinate descent. As a standard pre-
processing step, the features were processed to have a zero-mean and unit variance. The
concepts were initialized with 10 repetitions (for reproducing results) of k-means [7].

The first set of experiments were performed on the three image annotation datasets-
Tiger, Fox and Elephant [2]. In these datasets, an image consists of a set of segments (or


Citation
Citation
{Dollár} 

Citation
Citation
{Schmidt} 

Citation
Citation
{Murphy} 2012

Citation
Citation
{Babenko} 2008

Citation
Citation
{Babenko} 2008

Citation
Citation
{Sikka, Dhall, and Bartlett} 2013

Citation
Citation
{Chen, Bi, and Wang} 2006

Citation
Citation
{Dollár} 

Citation
Citation
{Andrews, Tsochantaridis, and Hofmann} 2002


SIKKA et al.: JC?MIL FOR MULTIPLE INSTANCE LEARNING 7

blobs), each characterized by color, texture and shape descriptors. For an image lying in the
positive class at least one of the blobs belongs to the target category. We used the same ex-
perimental protocol as described in [14], where average classification accuracy was reported
using 5 randomly selected 10 fold cross-validation sets 2. The comparative performance for
these 3 datasets is shown in Table 1.

The second set of experiments were conducted on the Corel-2000 dataset that consists
of 20 object categories with 100 images per category. In order to make a fair comparison,
we used the same version of dataset as in [5], where each image was segmented into a
number of regions, each of which were described by a 9 dimensional low-level feature vector
consisting of color moments, gradient etc. Similar to [5], 5 random splits were generated by
dividing the images into two equal parts, where (for each split) one part was used for testing
and other for training. Since the present formulation only addresses binary classification
problems, we conducted multiclass classification by training 20 per class one-vs-all binary
classifiers. During test time, an image was classified as belonging to the category with the
highest classification score. The results of different algorithms are shown in Table 2.

We also tested our algorithm on a public breast cancer dataset (UCSB Breast Cancer)
with image samples taken from 32 benign and 26 malignant breast cancer patients [12].
Each image was divided into an equal-sized 7 x 7 patch and visual features such as SIFT,
color histograms were extracted from each patch to form a 708 dimensional vector [12]. The
dimensionality was reduced to 100 by application of Principal Component Analysis [7]. The
task is to classify malignant and benign cancer images and the metric being reported is the
mean area under the ROC curve (AROC) for a 10-fold stratified cross-validation (Table 3).

Method type | Elephant | Fox | Tiger
mi-SVM [2] IS 82 58 79
MI-SVM [2] IS 81 59 84

MILBoost-NOR [28] | IS 73 58 56
EM-DD [29] IS 78 56 72
MIForests [14] IS 82 64 82
MILES [5] ES 81 62 80
DMIL [22] ES 87 68 89
JC?MIL (Ours) ES 86* 73 | 88*

Table 1: Comparison of our algorithm (% accuracy) with different Instance Space based
(IS) or Embedding Space (ES) based algorithms on three image annotation datasets [2]. The
second column shows the type of MIL algorithm (see Section 1).* The results were similar
to DMIL in the case of the Elephant and the Tiger datasets since the standard deviation in
both of these cases was around 1%.

5 Results and Discussion

Table 1 shows that our algorithm outperforms the performance of the best Instance Space
based MIL algorithms on the MIL benchmark datasets by an absolute margin of 4% on Ele-
phant, 9% on Fox and 4% on Tiger. Although DMIL seems to perform better than JCMIL
on the Tiger and Elephant datasets by a margin of ~ 1%, the results are statistically similar
since both accuracies have a standard deviation of ~ 1%. The performance improvement

2The random splits were downloaded from code provided by authors in [14].
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Method Corel-2000
MI-SVM [2] 54.6: [53.1 63.1]

MILES [5] 68.7: [67.370.1]
DD-SVM [4] 67.5: [66.1 68.9]
k-means-SVM [6] | 52.3: [51.6 52.9]
DMIL [22] 70.2: [68.3 72.1]
JC?MIL (Ours) | 73.2: [71.274.8]
Table 2: Evaluation (multiclass % accuracy) of Instance Space and Embedding Space based
MIL algorithms on the Corel-2000 dataset [4] along with 95% confidence interval.

Method UCSB Breast Cancer
MILBoost-NOR [28] 0.83
MI-SVM [2] 0.90
MILES [5] 0.74
JC2MIL (Ours) 0.95

Table 3: Evaluation (mean Area Under the ROC curve) on the UCSB Breast Cancer dataset
[12].

on the Fox dataset is significant relative to DMIL, with a margin of 5%. This hike in per-
formance could be explained by the presence of multiple target concepts in the Fox dataset,
which is successfully captured by our algorithm. This argument is also verified by the clas-
sification accuracy on the Corel-2000 dataset (Table 2), since this dataset is known to have
scene images with multiple target concepts, an example is shown in Figure 2. In this mul-
ticlass classification problem, our algorithm shows a clear performance improvement of 3%
relative to the previous state-of-the-art results achieved by DMIL. This table also shows that
the ES-based approaches perform much better compared to the IS-based MIL methods on
the Corel-2000 dataset, e.g. MI-SVM achieves a performance of 54.6% compared to 73.2%
by JC?MIL and 68.7% by MILES. This observation highlights our contention that the IS-
based approaches are unable to effectively tackle problems with multiple concepts that may
contribute unequally towards the classification of the bag.

Our algorithm also achieves the state-of-the-art AROC score of 0.95 on the UCSB Breast
Cancer dataset. The results on this dataset are interesting since in all of the previous datasets
(except Tiger) the performance of MILES was greater than or equal to MI-SVM and MIL-
BOOST. This could be the case since MILES might be overfitting as a result of using a large
number of concepts and unable to select relevant concepts using sparse-SVM. In this scenario
our algorithm not only outperforms MILES but also perform better than the state-of-the-art
IS-based algorithms.

5.1 Advantages of Discovering Discriminative Concepts

As discussed in Section 1, the primary advantage of discovering discriminative concepts
through joint training is that the discovered concepts are already tuned to the final task lead-
ing to a performance improvement. This allows to achieve a good recognition rate by using
a small number of concepts compared to the methods that separately learn the classifier and
the concepts [5, 6, 22]. The overcompleteness is required in unsupervised dictionary based
methods since it relaxes the classification problem by inducing a high dimensional embed-
ding space where the data can be easily separated. On the other hand by incorporating label
information during concept discovery, our algorithm is able to induce a low dimensional
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embedding space that is highly discriminative. To quantitatively highlight this point, we
compared the performance of JC?MIL with a variant employing the same set of concepts,
discovered via k-means, that were used to initialize our algorithm. A fair comparison was
made by using the same algorithmic design (classifier and similarity kernel) as JC?MIL. We
shall refer to this variant as “k-means + LR (BoW)” since in principle it is similar to the Bag
of Words model.

Figure 2 shows the performance of both the algorithms as a function of the dictionary size
for the Corel-2000 dataset. This result supports our contention that the task-specific concepts
discovered by our algorithm are able to yield a significant performance improvement over
k-means + LR (BoW). Moreover, our algorithm obtains the state-of-the-art results (73.2%)
with a small number of concepts (equal to 20) and the performance saturates for higher
number of concepts. On the contrary the performance of the BoW variant increases with the
size of concepts and reaches to a maximum of 70.1% (at a concept size of 3000), which is
still 3% points below the performance of JC?MIL. We have only shown results till a concept
size of 50 for clarity of exposition.

30
80

Accuracy

200 3
JC*MIL
) = l-means+LR (BoW)

10 20 30 40 50
Number of Concepts

Figure 2: This graph highlights the advantage of learning discriminative concepts simultane-
ously with the classifier (see Section 5.1). The plot shows the performance of our algorithm
and its variation using unsupervised concepts (k-means + LR (BoW)), on Corel-2000 dataset,
as a function of the number of concepts. The performance of JC?MIL reaches a maximum
of 73.2% at a concept size of 20 and saturates for a higher number of concepts. On the other
hand, the performance of the BoW variant reaches to a maximum of 70.1% at a concept size
of 3000 and saturates thereafter.

6 Conclusion and Future Directions

This paper proposed a novel Embedding Space (ES) based Multiple Instance Learning (MIL)
approach for visual classification problems. Unlike Instance-space (IS) based MIL ap-
proaches such as MILBOOST [28], the proposed method models the presence of multiple
intermediate concepts that may contribute unequally towards predicting an object or an ac-
tion. Arguing the advantages of learning concepts in a task-driven fashion, we proposed a
novel approach for jointly learning the set of concepts and classifier parameters in a MIL
setting. The proposed solution addresses an inherent issue in previous ES based methods
where the concepts and the classifier were tuned independently, leading to concepts that may
not be optimal for classification. We refer to our algorithm as Joint Clustering and Classifi-
cation for Multiple Instance Learning (JC*MIL) since the set of discovered concepts can be
related to semantic clusters in the instance space. The performance advantages of JCZMIL
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were shown by reporting state-of-the-art results on several challenging MIL datasets. We
further showed the advantages of discovering discriminating concepts in JC?MIL compared
to algorithms using unsupervised concepts.

We also observed that our algorithm outperformed unsupervised dictionary based ES
methods by discovering a (relatively) small number of concepts. This allows our algorithm
to be easily kernelized, making it possible to successfully cluster and classify fine-grained
categories with high accuracy [9]. A possible research avenue that emerges with this work
is towards using a more generic model for learning concepts (such as sparse coding based
dictionaries [9, 16, 24]) in the proposed joint framework.
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