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Abstract

This paper proposes a novel multi-target tracking method which jointly solves a
data association problem using images from multiple cameras. In this work, the spatio-
temporal data association problem is formulated as a multidimensional assignment prob-
lem (MDA). To achieve a fast, efficient, and easily implementable approximation al-
gorithm, we solve the MDA problem approximately by solving a sequence of bipartite
matching problems using random splitting and merging operations. In this formulation,
we design a new cost function, considering the accuracy in 3D reconstruction, motion
smoothness, visibility from cameras, starting/ending at entrance and exit zone, and false
positive. Our approach reconstructs 3D trajectories that represent people’s movement
as 3D cylinders whose locations are estimated considering all adjacent frames. The
experiments illustrate the proposed method shows the state-of-the-art performance in
challenging multi-camera datasets and the computational efficiency with 8 times faster
computation than the existing BIP approach.

1 Introduction
3D localization and tracking of multiple targets are important tasks in computer vision for ap-
plications such as surveillance and sports player analysis. A number of multi-target tracking
algorithms have been proposed for many years giving successful results [3, 10, 11, 12, 13,
16, 19, 20]. In single camera approaches [3, 20], 3D locations of a person is estimated with
a ground plane assumption that the person stands on a 3D virtual plane. Most of the recent
single camera approaches adopt the tracking-by-detection framework which utilizes time-
independent observations obtained by the classification or background subtraction methods.
In the tracking-by-detection framework, tracking means linking the observations through
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frames for the same person, so the problem is referred to as data association. The benefit of
tracking-by-detection is that it is robust to drifting and easy to recover from tracking failure.
However, occlusion makes the problem still challenging because the detection performance
significantly decreases when people are occluded by static obstacles or other people. To
overcome the occlusions, the multi-camera based approaches have attempt to integrate the
observations from multi-cameras. Several multi-camera based approaches have generated a
probability map [10, 12, 19]. After reconstructing these probability maps, they apply a single
camera based tracking approach, such as linear programming [1], graph cut [12], and mean-
shift single target tracker [19]. Some other approaches have made 3D hypotheses by fusing
object detections from multi-cameras and solved (temporal) data association problem of the
3D hypotheses [4, 21]. The main disadvantage of these multi-camera based approaches is
that they separate the problem into two sub-problems: reconstruction and tracking.

In recent years, there has been an increasing interest in a unified framework considering
reconstruction and tracking simultaneously [11, 13]. In the unified framework, two combina-
torial problems should be solved at the same time: spatial data association between cameras
and temporal data association between frames. Since the spatio-temporal data association
problem is a well known NP-hard problem even in a small number of cameras or frames
(more than 3) [18], it is difficult to make the problem tractable. Recently, several min-cost
flow based methods [11, 13] formulated the spatio-temporal data association problem as a
binary integer programming (BIP) problem generating a graph among detections and solved
it by a BIP solver. To make the BIP problem tractable, they simplify both optimization vari-
ables and the cost function by assuming that the optimization variables and the cost function
are decomposable with respect to edges of the graph. Although several min-cost flow based
methods in a single camera can get a global optimum in a polynomial time [1, 22], the
min-cost flow based methods in multi-camera are still NP-hard. The complexity grows ex-
ponentially with the number of cameras since combinations of observations from different
cameras exponentially increase and their costs need to be predefined for a BIP solver. In
addition, the min-cost flow based approaches can not deal with a higher-order motion model
which is a function of three or more nodes because the cost function of the min-cost flow
approaches can not be factored into the product/sum of edges of multiple adjacent nodes.

In this paper, we propose an approximation algorithm for multidimensional assignment
problem to solve the spatio-temporal data association problem with a reasonable computa-
tional load. The approximation algorithm iteratively improves a feasible solution by two
operations: random splitting and merging. The solution in each iteration is re-constructed by
random splitting and optimal merging of the trajectories in the previous solution. The new
solution is evaluated by the proposed cost function and obtained so as to have lower cost
than the previous one and eventually the solution converges to the local minimum. Given
a feasible solution, the approximation problem corresponds to a bipartite matching problem
of random splits of the previous set of trajectories. Hence the proposed formulation can be
considered as a guided random search to find the global optimum through repeated random
local searches (bipartite matchings). In addition, we design a new cost function considering
3D reconstruction accuracy, motion smoothness, visibility from cameras, starting/ending at
entrance and exit zone, and false positive. In particular, we use a spline-based probability
model for higher-order motion model to improve the tracking performance by considering
the dynamic patterns of motions. We also pursue a high accuracy estimation of 3D trajecto-
ries by smoothing the adjacent 3D positions. To evaluate the performance of 3D trajectory
estimation, we present a new dataset containing the ground truth of 3D head trajectories of
each person. The experiments using the dataset illustrate our 3D trajectory reconstruction
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and higher-order motion model significantly improves the 3D tracking performance. Addi-
tional experiments are conducted on public multi-camera datasets to compare our method
with the state-of-the-arts in view of performance and computation.

2 Proposed Method
We adopt the tracking-by-detection framework which considers every object detection as an
observation. A set of detections from all cameras is denoted by D whose element dk,t

i ∈ D
represents 2D bounding box for the i-th detection at frame index t ∈ {1, ...,T} and camera
index k ∈ {1, ...K}. We have mkt observations at the t-th frame of the k-th camera and each
observation is labeled by an augmented index set

Ikt = {0,1,2, ...,mkt}; (1)

where dummy index 0 represents a missing or invisible detection. The observations during
1, ...,T frames and at cameras 1, ...K form a KT-partite (hyper) graph,

G = (V,E) = (I11∪ ...∪ IKT ,E), (2)

where vertices V are partitioned into K×T different independent sets I11, ...,IKT and each
hyperedge in E contains at least one vertex in each partite set.

Trajectory hypotheses set T can be defined as a set of all hyperedges E. We represent
each trajectory hypothesis Tn ∈ T as a matrix whose entry in the k-th row and t-th column
corresponds to an observation index at the t-th frame of the k-the camera. In K = 3, T = 5
case, for example, a trajectory hypothesis can be expressed by

Tn =

 in11 in12 in13 in14 in15
in21 in22 in23 in24 in25
in31 in32 in33 in34 in35

 , inkt ∈ Ikt . (3)

2.1 Problem Formulation
Our goal is to find the optimal association hypothesis representing the true trajectories of all
persons captured by all cameras, where the association hypothesis H is denoted by a set of
disjoint trajectory hypotheses Tn, n = 1, ..., p with unknown number p of persons, that is,
H = {T1,T2, ...,Tp}. Each trajectory hypothesis Tn corresponds to a single person and it is
assumed that each trajectory hypothesis does not share an observation with other trajectory
hypotheses, i.e.,∀inkt , i

m
kt 6= 0, inkt 6= imkt if n 6= m. Our data association problem is achieved by

minimizing the sum of costs of trajectories over the association hypothesis H.
The problem of finding a set of disjoint trajectory hypotheses with a minimum sum of

costs can be formulated as a multidimensional assignment problem which is equivalent to
the problem of minimizing the sum of costs of hyperedges containing one element per partite
set in the hypergraph G. With binary decision variables xTn ∈ {0,1} deciding whether the
trajectory Tn is in the association hypothesis H, and cost function c : T→ R, the objective
function and disjointness constraints are given by

min ∑
Tn∈T

c(Tn)xTn s.t. ∑
Tn∈T[kt],i

xTn = 1


T[kt],i = {Tn ∈ T|[Tn]k,t = i}

k = 1,2, ...,K
t = 1,2, ...T

i = 1,2, ...,mkt

(4)
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where T[kt],i is a subset of all trajectory hypothesis set T whose value in the k-th row and t-th
column has the detection index i and cost c(Tn) denotes the cost of the n-th trajectory Tn.
Because of combinatorial space of T and disjoint constraints, the problem becomes NP-hard
even in small T or K (more than 3 cameras or 3 frames) [18]. It can be solved by using
an approximate method such as greedy, branch and bound techniques, and the Lagrangian
relaxation methods [7, 18]. In a single camera case, Collins [5] proposed an approximate
algorithm that iteratively improve a feasible solution to solve multi-target tracking problem.
Until now, there is no research on the MDA formulation to solve both the multi-target track-
ing problem and the multi-camera fusion problem simultaneously. The following section
presents an algorithm for finding an approximate solution to the MDA problem by itera-
tively improving the given initial solution.

2.2 Approximation of MDA

If MDA problem can be approximated to a weighted bipartite matching problem, it can be
solved in a polynomial time by a well known algorithm such as Hungarian algorithm [17]. In
this section, we formulate a weighted bipartite matching problem approximating the original
MDA formulation eq. (4). Denoting an association hypothesis at iter-th iteration as Hiter, we
can get a new association hypothesis Hiter by improving the previous association hypothesis
Hiter−1. The key idea is that we randomly split the previous association hypothesis Hiter−1

and optimally re-merging by solving the approximated matching problem. Our split/merge
strategy is expected to find the solution of which quality is better than or equal to the previ-
ous one, because it splits the previous association hypothesis Hiter−1 while maintaining the
disjointness of the trajectory and re-merges the split trajectories to form a new association
hypothesis Hiter with a less than or equal to the previous cost.

First, we randomly split the previous association hypothesis Hiter−1 into two groups H̃I

and H̃J . With the matrix representation of trajectory hypothesis, a single trajectory hypoth-
esis can be divided into two splits by using two binary matrices called Random Split Mask
(RSM) satisfying

MI +MJ = 1
T×K , (5)

where 1T×K is all-ones matrix and all entries of MI ,MJ have 0 or 1. With this Random
Split MaskMI ,MJ , one trajectory hypothesis Tn can be divided into

Tn =MI⊗Tn +MJ⊗Tn, (6)

where ⊗ is an entry-wise product operator. MI⊗Tn andMJ⊗Tn are trajectory hypothesis
splits. Finally, an association hypothesis Hiter−1 is split into H̃I and H̃J as follows:

H̃I = {MI⊗Tn| ∀Tn ∈Hiter−1,MI⊗Tn 6= 0} (7)

H̃J = {MJ⊗Tn| ∀Tn ∈Hiter−1,MJ⊗Tn 6= 0}. (8)

Merging two trajectory hypothesis can be interpreted as a summation of the re-selected
two trajectory hypothesis splits from different trajectory hypotheses. For each T I

i ∈ H̃I ,T J
j ∈

H̃J , the merged trajectory hypothesis is the summation of two matrices T I
i +T J

j . Next, we are
going to find an optimal merging pair T I

i ,T J
j , which is equivalent to the problem of finding a

weighted maximum matching in a bipartite graph. The objective function of merging process
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is formulated as

min
|H̃I |

∑
i=0

|H̃J |

∑
j=0

c̃i jψi j s.t.

|H̃J |

∑
j=0

ψi j = 1; i = 1, ..., |H̃I |

|H̃I |

∑
i=0

ψi j = 1; j = 1, ..., |H̃J |,

(9)

where c̃i j = c(T I
i +T J

j ) and ψi j = 1 means a merging of two trajectory hypotheses T I
i and

T J
j . The problem can be solved exactly in polynomial time by the Kuhn-Munkres Hungrarian

algorithm [17]. From the optimal solution ψi j
∗ of the weighted bipartite matching problem,

the re-merged trajectory hypothesis Tn ∈Hiter is obtained by Tn = T I
i +T J

j ,∀i, j,∀ψi j
∗ = 1.

Finally, the new association hypothesis Hiter is a set of re-merged trajectory between H̃I and
H̃J .

In our data association, the optimal value Citer of the new association hypothesis Hiter

at the iter-th iteration can not be worse than the previous optimal value Citer−1, that is
Citer ≤ Citer−1. This is because we adopt a descent strategy, in other words, the associa-
tion hypothesis would not change when the new association has larger optimal value than
the previous association. Finally, it is guaranteed to eventually converged to a local optimum
by randomly changing the RSM. We have empirically found that the proposed algorithm
converges rapidly. Our optimization strategy is summarized in Algorithm 1.

Our method finds the optimum by iteratively improving a feasible solution, so the initial
feasible solution is required. We first find a possible association in spatial domain, consider-
ing the distance between detections in world coordinate. In our experiment, the maximum of
allowed distance is set to 1.5 meter. Next, we find the detections with the minimum recon-
struction error at each frame, then we regard the detections as a person candidate for the next
temporal data association. We iteratively find the other person candidates with minimum
reconstruction error until all detections are selected. Next, we link the candidates in tempo-
ral domain. We sequentially solve a bipartite matching problem between two frames by the
Hungarian algorithm and define weights of each edge as distances between the candidates.
For the initial feasible solution, we note that only reliable candidates are linked. We ignore
all edges from a candidate if the ratio of the the second smallest weight of edge from the
candidate to the smallest one is smaller than a threshold τ = 1.5. We use this greedy method
for baselines of our experiment, denoted as "Initial" and "Greedy" method, but in "Greedy"
method consider all edges between candidates without ignoring them for long trajectories.

3 Cost Design

In this section, we present a cost design for our formulation, considering 3D reconstruction
accuracy, motion smoothness, starting/ending at entrance and exit zone, and false positive.
We model each person as a 3D cylinder centered at (x,y,z) in a 3D space with radius r
and height h. We assume that there exists a deterministic function mapping a trajectory
hypothesis Tn to a set of 3D cylinder Xn = {xsn

n , ...,xen
n } where each sn and en, respectively,

are index of the first and last frames. xt
n is a 3D cylinder at the t-th frame. The set of

detections of the n-th person at the t-th frame is denoted by Dt
n and the index set of visible

cameras of Xt
n is denoted by Nt

n.
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Algorithm 1 An Iterative Approximation of MDA
Input: H0, max_iteration
Output: H∗
1: for iter← 1, . . . ,max_iteration do
2: Select the Random Split MaskMI ,MJ

3: Split Hiter−1 into H̃I ,H̃J by RSMMI ,MJ

4: H̃I ←{MI ⊗Ti},∀Ti ∈Hiter−1

5: H̃J ←{MJ ⊗Ti},∀Ti ∈Hiter−1

6: Find optimal weighted bipartite matching ψ∗i j
7: for all i, j satifying ψ∗i j = 1 do
8: Hiter ← T I

i +T I
j

end for
end for

9: H∗ = Hmax_iteration

Our cost function is a summation of five individual terms: cost for 3D reconstruction
accuracy (crec), cost for motion smoothness (cmot ), cost for visibility from camera (cvis), cost
for trajectory start/end (ctse), and cost for false positive trajectory (c f pt ),

c(Tn) = cTn = crec + cmot + cvis + ctse + c f pt . (10)

Cost for 3D Reconstruction Accuracy. We design the cost crec measuring 3D recon-
struction error between a 3D cylinder model and its observations from multi-cameras. The
cost crec increases proportional to the Euclidean distances between the 3D cylinder and pro-
jections from 2D camera observations. We define the crec as a summation of 3D reconstruc-
tion error εrec over the entire trajectory. At each frame, 3D reconstruction error εrec is the root
mean squared error (RMSE) between the center of 3D cylinder ct

n = (x,y,z) and projections
from the detection set Dt

n. We also regularize the 3D reconstruction error by setting a default
error term r when a person is visible but not detected. The cost for the 3D reconstruction
accuracy is given by

crec(Xn) =
en

∑
t=sn

λrec · εrec(xt
n) =

en

∑
t=sn

λrec ·
√

1
|Nt

n|
∑

k∈Nt
n

εk
rec(Xt

n)
2 (11)

ε
k
rec(x

t
n) =

{∥∥∥Φk(dk,t
n ,z)− ct

n

∥∥∥ , ∃dk,t
n ∈ Dt

n

r, otherwise
(12)

where Φk(d,z) is the projected point of detection d from the image plane of k-th camera to
the world coordinate where z-coordinate is fixed to z.

Cost for Motion Smoothness. The cost for motion smoothness evaluate how well tra-
jectory describes real motion of a person. We assume that motion of people is closer to a
higher-order curve rather than a first-order line. For this purpose, we adopt a spline-based
cost function for higher-order motion model considering curvature term εc of a curve as well
as average distance εd similar to Collins [5]. The cost is defined by a weighted sum of curva-
ture term εc and average distance term εd and the weights are given by the number of average
detections over the consecutive frames. The cost for motion smoothness is given by

cmot(Xn) = λmot · (αm · εd +(1−αm) · εc). (13)
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where each term is given by εd =
en
∑

t=2
wt

d ·
∥∥xt

n−xt−1
n
∥∥,εc =

en−1
∑

t=2
wt

c ·
∥∥xt+1

n −2 ·xt
n +xt−1

n
∥∥ ,

wt
d =
|Dt

n|+|Dt−1
n |

2 , and wt
c =
|Dt+1

n |+|Dt
n|+|Dt−1

n |
3 .

Cost for Visibility from Cameras The cost for visibility of cameras is designed for
modeling whether a person is visible at each camera. We assume that a person will be
detected at each camera with probability of recall αrec. The cost for visibility from camera
increases proportional to the number of cameras from which a person is visible but not
detected. We give a penalty to the trajectory which has missing detections, satisfying

cvis(Xn) =
en

∑
t=sn

(|Nt
n|−

∣∣Dt
n
∣∣) · log(1−αrec), (14)

Cost on Trajectory Start/End This cost is to prevent a trivial solution which includes
too many track fragments. The long trajectory hypothesis is more reasonable than the short
one. Similar to single camera approach [22], we give a penalty to the trajectory hypothesis
whenever it starts or ends, which means that a trajectory with frequent starting or ending
increases the cost. The cost is proportional to the number of detection at start/end time
ctse = λtse · (|Dsn

n |+ |D
en
n |). In addition, a trajectory hypothesis is enforced to start and end

at entrance and exit zone. If a trajectory hypothesis starts or ends at a region out of the
entry/exit zone, we give an additional penalty proportional to the number of detections, that
is, λtee · |Dt

n| where λtee is a design parameter.
Cost for False Positive Trajectory The cost for false positive trajectories prevents a

trivial association hypothesis where a trajectory hypothesis is considered as a false positive.
We penalize a false positive trajectory which consists of detections at the frame where a
trajectory starts and ends at the same time. The cost can be defined as c f pt(Tn) = λ f pt ∗|Dsn

n |,
if sn = en.

4 Experimental Results

We evaluated the performance of our 3D localization and tracking method on several chal-
lenging datasets. Our goal is to provide the 3D locations of heads. However, there is no
standard dataset for evaluating 3D locations of heads, so we have constructed a new dataset
which provides the ground truth of 3D trajectories. For quantitative evaluation, we used the
widely accepted CLEAR MOT metrics [2]. The Multi-Object Tracking Accuracy (MOTA)
measures the overall performance of multi-target tracking considering missed targets, false
alarms, and identity switches. The Multi-Object Tracking Precision (MOTP) averages the
localization error between estimated and ground truth trajectory. We applied CLEAR MOT
metrics [2] in 3D world coordinate. The criterion on matching to the ground truth is defined
as the distance in 3D world coordinate, where the target is determined to be matched to the
ground truth when the distance is less than a threshold (set to 1 meter in our experiment).
Moreover, we also used the metrics proposed in [15], that is, the number of trajectories
mostly tracked (MT), mostly lost (ML), and partially tracked (PT) as well as the number of
fragments (FM) and identity switches (IDS). We reported the numbers for recall and pre-
cision. Figure 2 illustrates our tracking results. In our all experiments, we set r = 30 cm,
αrec = 0.9 and αm = 0.5 which indicates the diameter of a person, the expected recall of
the detector, and a weight of motion smoothness. People are expected to move under the
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Figure 1: Results for MOTA, IDS and Recall in PSN-University standing sequence. Top: for
increasing missing data. Bottom: for increasing false positives. Also shown in parentheses
is the number of cameras.

maximum allowed distance αmax = 840/ f cm at a video with average frame-rate f fps. We
set (λrec,λmot ,λtse,λtee,λ f pt) = (0.5,1/αmax,5,3.34,12.5) through trial and error method.

PSN-University. The PSN-University dataset consists of three sequences of standing,
sitting, and standing & sitting. The video was captured by four 10 Megapixel cameras with
3648×2752 resolution at 3 fps. In our experiment, we did not use any detectors to decouple
the tracking performance from the detector’s performance, that is, we used a video with hand-
labeled head 2D bounding boxes. Instead, to evaluate the tracking performance depending
on the detector’s performance, we added missing data and outliers to the annotated ground
truth detections. To simulate missing data, we removed true detections randomly, where we
changed the missing rate from 0% to 50%. To create the outliers, we made false detections
at random locations chosen uniformly, where we changed the outlier rate from 0 to 20% of
true detections

Figure 1 shows tendency of MOTA, IDS, and Recall depending on the missing rate and
outliers rate. The result shows that both "Initial" and "Greedy" method (details in Section
2.2) in 0% missing rate and 0% outlier rate achieved over 85% MOTA, but tracking perfor-
mance is significantly degraded for increasing detector errors. In Figure 1, we report the
results for different number of cameras as denoted blue line. We observed that adding cam-
eras results in significant improvement in performance for both missing data and outliers
case. MOTA of our method with four cameras drops only 10% for the missing rate of 50%,
while MOTA with two cameras drops 40%. Similarly, for the 20% outliers, MOTA with two
cameras drops 20% more than that with four cameras. Therefore, we can conclude that using
more cameras yields more robust performance against detector’s errors. To validate the ef-
fectiveness of our key cost functions, we also report the results of the variants of our method
denoted red dash lines: without higher-order motion model (NoHighMot), without smooth-
ing adjacent 3D positions (NoSmooth). The result implies that the proposed higher-order
motion model and smoothing adjacent 3D positions improve overall tracking performance
in terms of MOTA, IDS, and Recall.

We further report the results when both missing data and outliers are contained simulta-
neously. Table 1 shows the results of all sequences of the PSN-University dataset with 15%
outliers and 30% missing data which is the usual case in most detectors. sitting and stand-



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 9

Dataset Method MOTA MOTP IDS FM MT PT
Our method* 89.0 77.1 19 18 9 1

PSN-University Our method 83.3 75.5 26 20 10 0
standing seq. NoHighMot 82.5 73.0 32 23 10 0

NoSmooth 73.0 72.7 43 40 9 1
Greedy 53.1 74.3 141 133 0 10
Our method* 85.9 86.9 15 11 10 0

PSN-University Our method 77.6 88.3 36 36 9 1
sitting seq. NoHighMot 75.4 84.7 57 45 10 0

NoSmooth 61.3 80.6 86 74 8 2
Greedy 52.7 83.4 203 200 2 8
Our method* 78.3 84.7 28 20 9 1

PSN-University Our method 85.6 89.4 32 19 10 0
sit.&stand. seq. NoHighMot 87.6 87.0 29 31 10 0

NoSmooth 67.3 81.6 111 94 8 2
Greedy 58.9 85.4 268 263 5 5

Table 1: Quantitative result on all sequences of the PSN-University dataset. * mark denotes
the results when used with current existing classifier [8].

Method MOTA MOTP FM IDS Rcll Prcn
Ours (3) 98.5 77.5 2 2 99.2 99.3
Ours (5) 99.4 77.8 0 0 99.6 99.7
[1] (5) 82 50 - - - -
[13] (2) 76.0 60 - - - -
[13] (3) 71.4 53.4 - - - -
[11] (3) 99.4 83.0 1 2 - -

Table 2: Quantitative result on PETS2009. The number of cameras is shown in parentheses.

ing & sitting sequence have a large variation of heights of people because there are people
sitting and standing. In standing & sitting sequence, MOTA rises by about 18% when using
reconstruction of trajectories considering all adjacent frames. This is because considering
adjacent frames can estimate more reasonable 3D trajectories when a person is detected by a
single camera. We also report the results when used with current existing detector, denoted
as a star mark. We trained the state-of-the-arts pedestrian classifier [8] for a head detector
using positive samples from [14] and negative samples from INRIA dataset [6].

PETS2009. We evaluated our method on PETS2009 dataset and compared our result to
the state-of-the-arts Berclaz et al.[1], Leal-Taixe et al.[13] and Hoffmann et al. [11] as shown
in Table 2. Similar to Hoffmann et al. [11], we used the deformable part model (DPM) [9]
for the detection of people and adopted the same 3D ground truth trajectories provided by
Milan et al. [16]. Note that our results are much better than the proposed ones in [1, 13].
Compared with the current best-performing method [11], our method also reported the low-
est ID switches (IDS), fragments (FM), and competitive performance on MOTA measure by
using five cameras. We achieved high recall and precision, which means most of people are
localized and tracked with consistent identities. For this dataset, we also evaluated the influ-
ence of the number of cameras. As in the case of the PSN-University dataset, the increase of
cameras improves the performance of our method, while the performance in [13] is degraded
as the number of cameras increases.

To show the efficiency of our algorithm, we compared computational time of our method
with that of the best-performing method [11] on PETS2009 dataset. For a fair comparison,
computational time includes both time for calculating predefined costs and time for a BIP
solver in [11]. When we used five cameras and performed on an i7 CPU, 3.4 GHz, and
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Figure 2: Qualitative results on standing & sitting sequence of the PSN-University dataset
and PETS2009. 3D cylinder model of each person is projected to each camera. Our method
can estimate the height of each individual as shown in standing & sitting sequence.

16 GB RAM in MATLAB, our method took 7.3 s/frame on an average until our algorithm
converges, which is 8 times faster than 59 s/frame in [11]. For BIP based approaches
[11, 13], the complexity grows exponentially with the number of cameras since combinations
of observations from different cameras exponentially increase and their costs need to be
predefined for a BIP solver. In our algorithm, by computing local changes of the costs,
the cost calculation and the use of memory are much more efficient than the BIP based
approaches [11, 13].

5 Conclusion

We have proposed an efficient approximation algorithm for MDA problem to solve spatio-
temporal data association problem for multi-camera multi-target tracking. The approxima-
tion algorithm of MDA problem iteratively improves a feasible solution by two operations:
random splitting and optimal merging. To improve the performance and reduce the com-
putation, we defined a new cost function considering 3D reconstruction accuracy, motion
smoothness, visibility from cameras, starting/ending at entrance and exit zone, and false
positive. In particular, the proposed high-order motion model and 3D trajectory construction
with 3D cylinder model can reduce the possibility of ID switches. As shown in the experi-
ments, the proposed approximation method shows state-of-the-arts performance with 8 times
faster computation than the existing BIP approach.
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