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This paper proposes a novel multi-target tracking method which solves
a data association problem using images from multi-cameras. In multi-
cameras, two combinatorial problems should be solved at the same time:
spatial data association between cameras and temporal data association
between frames. The spatio-temporal data association problem is a well
known NP-hard problem even in a small number of cameras or frames
(more than 3). Current existing methods [1, 2] simplify the spatio-temporal
data association problem through assumption of simple motion model
(shortest path) and 3D location estimation. However, the complexity
grows exponentially with the number of cameras.

In this work, the spatio-temporal data association problem is formu-
lated as a multidimensional assignment problem (MDA). To achieve a
fast, efficient, and easily implementable algorithm, we solve the MDA
problem iteratively by solving a sequence of bipartite matching problems
using random splitting and merging operations. Hence, the proposed al-
gorithm can be considered as a guided random search to find the global
optimum through repeated random local searches (bipartite matchings).
In addition, we design a new cost function considering 3D reconstruction
accuracy, motion smoothness, visibility from cameras, starting/ending at
entrance and exit zone, and false positive. Our approach reconstructs 3D
trajectories that represent people’s movement as 3D cylinders whose lo-
cations are estimated considering all adjacent frames (See Figure 2).

The observations during 1, ...,T frames and at cameras 1, ...K form
a KT-partite (hyper) graph G = (V,E) = (I11 ∪ ...∪ IKT ,E), where ver-
tices V are partitioned into K×T different independent sets I11, ...,IKT
and each hyperedge in E contains at least one vertex in each partite set.
Trajectory hypotheses set T can be defined as a set of all hyperedges E.
We represent each trajectory hypothesis Tn ∈ T as a matrix whose entry
in the k-th row and t-th column corresponds to an observation index at the
t-th frame of the k-the camera. The problem of finding a set of disjoint
trajectory hypotheses with a minimum sum of costs can be formulated
as the MDA problem which is equivalent to the problem of minimizing
the sum of costs of hyperedges containing one element per partite set
in the hypergraph G. With binary decision variables xTn ∈ {0,1} decid-
ing whether the trajectory Tn is in the association hypothesis H, and cost
function c : T→R, the objective function and disjointness constraints are
given by

min ∑
Tn∈T

c(Tn)xTn s.t. ∑
Tn∈T[kt],i

xTn = 1


T[kt],i = {Tn ∈ T|[Tn]k,t = i}

k = 1,2, ...,K
t = 1,2, ...T

i = 1,2, ...,mkt
(1)

where T[kt],i is a subset of all trajectory hypothesis set T whose value
in the k-th row and t-th column has the detection index i and cost c(Tn)
denotes the cost of the n-th trajectory Tn.

Denoting an association hypothesis at iter-th iteration as Hiter, we
can get a new association hypothesis Hiter by improving the previous
association hypothesis Hiter−1. The key idea is that we randomly split
the previous association hypothesis Hiter−1 and optimally re-merging by
solving the approximated matching problem. Our split/merge strategy is
expected to find the solution of which quality is better than or equal to the
previous one, because it splits the previous association hypothesis Hiter−1

while maintaining the disjointness of the trajectory and re-merges the split
trajectories to form a new association hypothesis Hiter with a less than or
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Figure 1: An example of 5 frames and 2 cameras. Our data association
strategy is to split and re-merge the previous association hypothesis H
iteratively. Trajectory splitting is done by the Random Split Mask de-
termined randomly at each iteration and merging is done to search the
optimal bipartite matching between association hypotheses splits H̃I and
H̃J . The resulting optimal merged association hypotheses is H̃∗.
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Figure 2: Examples of tracking result by our method.

equal to the previous cost (See an example in Figure 1).
Our cost function is a summation of five individual terms:

c(Tn) = cTn = crec + cmot + cvis + ctse + c f pt , (2)

crec: measures 3D reconstruction error between a 3D cylinder model and
its observations from multi-cameras,
cmot : evaluates how well trajectory describes real motion of a person,
cvis: designed for modeling whether a person is visible at each camera,
ctse: prevents a trivial solution which includes too many track fragments,
c f pt : prevents a trivial association hypothesis where a trajectory hypoth-
esis is considered as a false positive.

The experiments illustrate the proposed method shows the state-of-
the-art performance in challenging multi-camera datasets and the compu-
tational efficiency with 8 times faster computation than the existing BIP
approach. In particular, the proposed high-order motion model and 3D
trajectory estimation with 3D cylinder model can reduce the possibility of
ID switches.
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