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Abstract

In this paper we present a robust method for simultaneous registration of multiple
3D scans. Rigid registration is an important task in many applications such as surface
reconstruction, navigation and computer aided design. The goal of 3-D (rigid) registra-
tion is to align surfaces through a (rigid) transformation. A large number of existing
registration algorithms are dependent on finding matching points between scans, but a
significant number of them are spurious, and it is necessary to clean up the matches ob-
tained. This requires a substantial amount of tuning of parameters and the final result
might still contain outliers. Since the number of outliers are sparse we formulate the reg-
istration optimization using the `1-norm. We present experimental results to show that
the performance of our algorithm is comparable to state of the art algorithms.

1 Introduction
Registration (or alignment) of surfaces is an important task in many areas such as robotics,
computer aided modeling, virtual reality and surface reconstruction. Building a full model
of a object requires registering multiple surfaces observed from different viewpoints. In
this paper we present an approach for registering multiple surfaces simultaneously when the
transformation is rigid.

1.1 Pairwise Registration
The problem of pairwise rigid registration is to find a rigid transformation M, that aligns two
surfaces S1 and S2. This can be expressed mathematically as

min
M∈SE(3)

E(M) =
∫

x∈S1

d(Mx,S2)
2 dx (1)

Where M is of the form

M =

[
R t
0 1

]
(2)

with R and t being rotation and translation respectively, x =
[

x y z 1
]T and d(x,S) =

min
y∈S
||x−y||2 is the distance of point x to the surface S. When the observations are discrete
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the integral can be replaced by a summation.

min
M∈SE(3)

∑
x∈S1

d(Mx,S2)
2 (3)

1.2 Iterative Closest Point
The iterative closest point algorithm (ICP) (Besl and McKay [5], Chen and Medioni [10])
is a pairwise alignment method which iteratively solves the optimization problem (3) by
splitting the problem into a correspondence estimation step and a transformation estimation
step.

Correspondence Estimation: The correspondence estimation problem is to find a point
in yi ∈ S2 for each xi ∈ S1. When the scans are close enough the correspondences can be
calculated using closest point queries [5] as above. If the scans are far apart correspondences
can be found using feature matching with features like spin images [15] and SHOT [19]. In
either case the matches are not always accurate. For instance when the scans are partially
overlapping, some points in the scans will not have matching points. Hence, heuristics are
applied for better alignment e.g. removing correspondences which are too far away; see
Rusinkiewicz and Levoy [18] for more details.

Transformation Estimation: Once the correspondences are known, the transformation
can be estimated by minimising a sum of squared distance function

min
M∈SE(3)

m

∑
i=1

d(Mxi,yi)
2 (4)

The distance function (.x,y) varies based on the approximation of d(x,S) used. Commonly
used are the euclidean distance (or point-to-point distance) and the distance between the
point x and the tangent plane of S containing y.

The classical ICP algorithm uses the closest point to find the correspondence and the
point-to-point distance for estimating the transformation

Step (1) yk+1
i = argmin

y∈S2

||Mkxi−y||2 (5)

Step (2) Mk+1 = argmin
M∈SE(3)

N

∑
i=1
||Mxi−yk+1

i ||2 (6)

The optimization (6) can be solved using SVD [3, 21] and finding the closest point can be
using the kd-tree [12] data structure. It can be seen that this algorithm converges to a local
minimum since sequence E(Mk) is monotonically decreasing [5].

1.3 Multiview Registration
While pairwise registration registers two scans at a time, multiview registration simultane-
ously registers multiple scans. Given scans S1 . . .SN and a view-graph (i.e. a graph with
edges between scans which have common points), G = ({1 . . .N},E). This problem can be
generalized as

min
Mi∈SE(3)

E(M1 . . .MN) (7)
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Where

E(M1 . . .MN) = ∑
(i, j)∈E

∑
x∈Si

d(Mix,M jS j)
2 (8)

and MS = {Mx x ∈ S}.

1.4 Multiview ICP
Similar to pairwise registration, aligning multiple scans can also be divided into correspon-
dence estimation and transformation estimation steps as shown in Algorithm 1.

Algorithm 1: A generic Multiview ICP algorithm.
We can replace the transformation estimation step (Line 12) with various methods discussed in later sections.

In : Scans S1 . . .SN , view graph G
Out: The aligned scans S∗1 . . .S∗N ;
Aligning transformations M̂1 . . .M̂N

1 Initialize: s = 0;
2 for i = 1 . . .N do
3 S(s)

i = Si
4 end
5 repeat

// Correspondence Estimation
6 foreach {i, j} ∈ E do
7 foreach yk ∈ S(s)

i do
8 xk

i j = yk;
9 xk

ji = argmind(yk,S j);
10 end
11 end

// Transformation Estimation

12 {M(s)
i }= argmin

{Mi}⊂SE(3)N
E(M1, . . . ,MN |S1, . . . ,SN);

// Update
13 for i = 1 . . .N do
14 S(s+1)

i = M(s)
i S(s)

i ;

15 M̂i = M(s)
i M̂i;

16 end
17 s = s+1;
18 until converged;
19 for i = 1 . . .N do
20 S∗i = S(s)

i
21 end

2 Related Work
Early work in multiview registration include Chen and Medioni [10], Pulli [17], Benjamaa
and Schmitt [4] and Williams and Bennamoun [22]. The method by Pulli [17] uses an incre-
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ICP initialization Torsello et al. `2-MVICP `1-MVICP
Figure 1: The results here show the performance of different algorithms when the initialization (left)
is bad. Torsello et al. [20] and `2-MVICP Krishnan et al. [16] both fail while `1 MVICP ignores the
outlier scan and registers the rest of them correctly.

mental method where in each step one scan is aligned with a chosen set of its neighbors. The
techniques by Benjamaa and Schmitt [4] and Williams and Bennamoun [22] extend the ICP
algorithm for the multiview case by solving Line 12 with the distance, d being the squared
Euclidean norm the former uses a quaternion method while the latter uses a matrix based
method.

More recent works include Krishnan et al. [16], Govindu and Pooja [13] and Torsello
et al. [20]. Krishnan et al. [16] extend the works of Benjamaa and Schmitt [4] and Williams
and Bennamoun [22] to solve Line 12 using a manifold based Newton’s method. While
Govindu and Pooja [13] and Torsello et al. [20] find the ICP estimates for the pairwise trans-
formation and obtain global transformations by global averaging. They use the consistency
constraint Mi j = M jMi and find the global motions by solving the minimization problem for
some distance d

min∑
i, j

d(Mi j,M jMi)
2 (9)

Govindu et al. exploit the Lie-algebraic nature of SE(3) and use the Riemann distance for
optimizing (9). Torsello et al. use the dual quaternion representation of a rigid transformation
and minimize the screw distance. These methods cannot deal with cases where the obtained
pairwise transformations are spurious (due to some edges being spurious.) Chatterjee et al.
[9] modify the work in [13] by using a robust cost function to deal with the outlier relative
motions.

3 Contribution

Since correspondences obtained are incorrect they need to be cleaned up (see [18]). This
requires a tedious amount of parameter tuning and the final result might still contain outliers.
Hence the need to use robust estimators. Here we present a robust framework to register
point sets using the sparsity inducing `1-norm. Related work in this respect for pairwise
registration can be found in Bouaziz et al. [6] and Albarelli et al. [2] for rigid registration and
by Hontani et al. [14] for non-rigid registration. Bouaziz et al. [6] use `p norm and Albarelli
et al. [2] use an `1 regularization for robust estimation. Our optimization problem takes
an approach similar to [16] which takes into account consistency by solving for the global
transformations directly. But, their cost function is susceptible to outliers. The optimization
can be used for both global registration and in an ICP like method for local refinement.
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4 Formulation and optimization
Robustness via sparsity imposition Consider the set of all the residual errors R = {ei j}.
A robust estimator divides the set into a small set of outliers of large magnitude and a large
set of inliers with small magnitude. The `0 norm counts the number of non-zero entries we
can formulate the problem as minimising ||R||0. It has been shown that minimising `0-norm
is equivalent to minimising `1 norm under certain conditions [8]. We therefore utilize the
`1 norm and replace the distance in (8) by sparsity imposing `1 distance. Our registration
optimization problem is

E(M1 . . .MN) = ∑
(i, j)∈E

∑
x∈Si

d`1(Mix,M jS j) (10)

where d`1(x,S)=min
y∈S
||x−y||1. This can now be solved using MVICP algorithm (Algorithm

1) if the scans are close to each other. To bring them close to each other we can register pairs
on a spanning tree of G (see [13] for more details) and then computing approximate values
of Mi which will serve as a good initialization.

4.1 Correspondence estimation step
The step in line 9 of Algorithm 1 is a nearest neighbor search y∗ = argmin

y∈S
||y− x||1. This

step can be implemented by using a kd-tree for a `1-metric, but is slightly more expensive
than `2-metric and make little difference to the algorithm. In this paper, we use the `1-metric
based kd-tree to find correspondences.

4.2 Transformation estimation step
If we assume that the residual noise in the scans are Gaussian we can model the transforma-
tion estimation step of multiview registration problem as

ek
i j = Mipk

i j−M jpk
ji ∼N (0,σ2) (11)

thus, the maximum likelihood estimate gives us `2 optimization problem which was solved
by Krishnan et al. [16]. We instead formulate the problem in terms of outliers and assume
that the noise is small

Mipk
i j−M jpk

ji = Ok
i j (12)

Since the vector Oi j = [Ok
i j
>
. . .Oni j

i j
>
]> is sparse we can use the `1-norm to impose this

constraint. So our cost function is

E`1(M1 . . .MN) = ∑
(i, j)∈E

||Oi j||1 (13)

To solve this optimization problem, we use the Lie group structure of SE(3) where,
for every M ∈ SE(3) there is a unique m in it’s corresponding Lie algebra se(3) such that
M = exp(m). The matrix m is of the form

m =

[
ΩΩΩ u
0 0

]
(14)
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and,

ΩΩΩ = [ωωω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωz 0

 (15)

Therefore, we can make the approximation, M = I+m. The cost function can be approxi-
mated as

Mipk
i j−M jpk

ji ≈mipk
i j−m jpk

ji +δpk
i j (16)

where, δpk
i j = pk

i j−pk
ji. Now, let

Di j = [· · · [Pi j]× · · ·− [P ji]× · · ·− I · · ·I · · · ] (17)

where,

[Pi j]× =


[
p1

i j

]
×

...
[pi j]

ni j
×

 (18)

Collecting all the terms we have D = [Di j](i, j)∈E and δδδ = [δpk
i j](i, j)∈E , the cost function is

now:

E`1(x) = ||δδδ −Dx||1 (19)

where, x = [ωωω1 · · ·ωωωN u1 · · ·uN ]
T which can be solved iteratively (for an available imple-

mentation see [7]).
It must be noted that the approximation in (16) is valid only if ωωω i’s and ui’s are small.

Hence, the optimization cannot start from an arbitrary point. For most cases, a good starting
point can be obtained by an initial pairwise ICP step. This algorithm is summarized in
Algorithm 2. While this is in some sense similar to [13], we note that we estimate the global
motions {Mi} directly and do not estimate the realtive motions between two scans.

Algorithm 2: Algorithm for Minimising E`1

In : Pi ,G ,M0
i

Out: The minimum point M̂i
1 initialize M̂i := M0

i ’s;
2 repeat

// Estimate increments mi by minimising (19)
3 Compute: δδδ and D;
4 Solve: x = argminx ||δδδ −Dx||1;
5 Set ∆Mi := exp(mi);
6 Update Mi := ∆MiMi;
7 Update Pi := ∆MiPi

8 until converged;
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5 Results
In this section we present the results of robust multiview alignment method presented in the
previous section. We show the performance by applying our method to both synthetic data
and real world data. We first demonstrate that our estimator is indeed robust to outliers.
Then we present results for some well known 3D data-sets and data acquired through the
Microsoft Kinect sensor.
Evaluation of the estimator: For verifying the robustness of our cost function, we sampled
400 (these are the right correspondences) points from the Stanford bunny model. We then
create five more “views” by rotating the views by an angle of {10◦,20◦,30◦,40◦,50◦} each
and adding random points as outliers. The resulting error in the estimate is shown in Figure
2 for different proportions of outliers. The `2-norm based estimation method by Krishnan
et al. [16] for estimating global transformations, performs poorly even when there are few
outliers. In contrast the `1 method performs as expected.
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(b) Mean translation error

Figure 2: (a) Mean rotation error in degrees with respect to the proportion of outliers. (b) Mean
translation error with respect to the proportion of outliers.
We can see clearly that our `1 estimator performs well in presence of outliers while `2 estimator fails.

Evaluation of the `1 MVICP: It can be very difficult to compare our method against all
of the heuristics used in ICP since there are a large number of them, thus we will limit our
comparison to heuristics that are most commonly used to remove outliers: (a) We remove all
the border points from the scans; (b) the correspondences which are far away as it is done in
trimmed ICP [11]; and, (c) use RANSAC to find pairwise transformations; we apply all of
them to both `2-MVICP and Torsello et al. [20].

 

 

(a) Torsello et al. (b) `2-MVICP (c) `1-MVICP (d) Model

Figure 3: Results using Torsello et al. [20] (a) and `2-MVICP [16] (b) and the result of our `1-MVICP
(c) Algorithm 1. As we can see `1-MVICP registers accurately while the others do not.

We demonstrate the robustness of our ICP algorithm by using the bunny model similarly
as above and create five more views by rotating the models by angles of {10◦,20◦,30◦,40◦,50◦}.
To each of these views, we add uniform random noise to the environment (as pictured in Fig-
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Iteration Torsello et al. `2-MVICP `1-MVICP

20

50

converged

151 iterations 173 iterations 91 iterations

Model cross section

ICP Initialization

Figure 4: Result of embedding `1 estimator in Algorithm 1 on Pooh data-set from Ohio repository
and comparison with `2 estimator Krishnan et al. [16] and Torsello et al. [20] at different iterations

ure 2.) In Figure 3 the performance of our algorithm is compared to `2-MVICP (where we
use global optimization of Krishnan et al. [16]) and the dual quaternion diffusion of Torsello
et al. [20]. We can see clearly that our method outperforms the other methods in accuracy.

For testing the algorithm on real data, we used data from the Ohio state repository [1] and
a scan acquired from Microsoft Kinect. We have no good quantitative method to judge the
accuracy of our algorithm since there is no ground truth. We give quantitative justifications
when necessary.

Figure 1 shows a model which was initialized with poor pairwise registration. This is
because one of the scans failed to register well with it’s neighbors. Here, neither the method
of Torsello et al. [20] nor `2 MVICP register correctly. While the proposed method fails to
register the outlier the scan properly, it registers the rest of the scans well.

Figure 4 shows the cross sections of each scan for different iterations for the Pooh model.
One observation we make is that by iteration 50, our method is much more closer to regis-
tration. This adds to our hypothesis of faster convergence in terms of number of iterations.
Figure 5 (top) shows the results of our algorithm on the bunny model. Here too, we see that
our method performs accurately compared to [13] and `2-MVICP.

Figure 5 (bottom) shows the cross-section of a model scanned using the Microsoft Kinect
sensor. We give a qualitative justification by looking at how well two almost disjoint meshes
which have no edge in the view graph register together. From Figure 6 (a), (b), (c) we can
see that meshes in the front and sides register accurately.

6 Conclusion and future work

In this paper we presented a robust estimator for simultaneous multiview registration. We
demonstrated that it performs significantly better than existing state of the art methods. For
future work we intend to generalize this algorithm to use `q norms which impose an even
stronger constraint on sparsity and the Huber cost function which is also shown to be robust
to outliers.
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Model ICP initialization Torsello et al. `2-MVICP `1-MVICP

Figure 5: Top: Results for bunny model from the Ohio 3D Database. We initialize the algorithm
using ICP. We see here that our `1-MVICP does as well as `2-MVICP and Torsello et al. [20]. Bottom:
Results for a bust captured using Microsoft Kinect. We initialize the algorithm using ICP. We see here
that both `2-MVICP and Toresllo et al. do not align the scans correctly while `1-MVICP (bottom right)
does.

(a) Scans for the front view (b) Scans for the side and front view

(c) Scans of the back and front views

Figure 6: Simultaneous registration of different views using our `1 MVICP method
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