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Registration (or alignment) of surfaces is an important task in many ar-
eas such as robotics, computer aided modeling, virtual reality and surface
reconstruction. Building a full model of a object requires registering mul-
tiple surfaces observed from different viewpoints. In this paper we present
an approach robust to outliers, for registering multiple surfaces simulta-
neously when the transformation is rigid.

Multiview registration simultaneously registers multiple scans. Given
scans S1 . . .SN and a view-graph (i.e. a graph with edges between scans
which have common points), G = ({1 . . .N},E). This problem can be
generalized as

min
Mi∈SE(3)

E(M1 . . .MN) (1)

Where

E(M1 . . .MN) = ∑
(i, j)∈E

∑
x∈Si

d(Mix,M jS j)
2 (2)

and MS = {Mx x ∈ S}.
The iterative closest point algorithm [1, 3] (ICP) is a pairwise align-

ment method which iteratively solves the optimization problem (2) by
splitting the problem into a correspondence estimation step and a trans-
formation estimation step.

Correspondence Estimation: The correspondence estimation prob-
lem is to find a point in yi ∈ S2 for each xi ∈ S1. When the scans are close
enough the correspondences can be calculated using closest point queries
[1] as above. If the scans are far apart correspondences can be found us-
ing feature matching. In either case the matches are not always accurate.
For instance when the scans are partially overlapping, some points in the
scans will not have matching points. Hence, heuristics are applied for bet-
ter alignment e.g. removing correspondences which are too far away; see
Rusinkiewicz and Levoy [6] for more details.

Transformation Estimation: Once the correspondences are known,
the transformation can be estimated by minimising a sum of squared dis-
tance function

{M(s)
i }= argmin

{Mi}⊂SE(3)N
∑

(i, j)∈E

ni j

∑
k=1

d(Mixk
i j,M jxk

ji)
2 (3)

The distance function (.x,y) varies based on the approximation of d(x,S)
used. Commonly used are the euclidean distance (or point-to-point dis-
tance) and the distance between the point x and the tangent plane of S
containing y.

Recent works include Krishnan et al. [5], Govindu and Pooja [4] and
Torsello et al. [7]. Krishnan et al. [5] solves (3), with d being the euclidean
distance, using a manifold based Newton’s method. While Govindu and
Pooja [4] and Torsello et al. [7] find the ICP estimates for the pairwise
transformation and obtain global transformations by global averaging.
They use the consistency constraint Mi j = M jMi and find the global mo-
tions by solving the minimization problem for some distance d

min∑
i, j

d(Mi j,M jMi)
2 (4)

These algorithms are dependent on finding matching points between
scans, but a significant number of them are spurious, and it is necessary
to clean up the matches obtained. This requires a substantial amount of
tuning of parameters and the final result might still contain outliers. Since
the number of outliers are sparse we formulate the registration optimiza-
tion using the `1-norm. We present experimental results to show that the
performance of our algorithm is comparable to state of the art algorithms.

If we assume that the residual noise in the scans are Gaussian we
can model the transformation estimation step of multiview registration
problem as

ICP initialization Torsello et al. `2-MVICP `1-MVICP
Figure 1: The results here show the performance of different algorithms when
the initialization (left) is bad. Torsello et al. [7] and `2-MVICP Krishnan et al. [5]
both fail while `1 MVICP ignores the outlier scan and registers the rest of them
correctly.

ek
i j = Mipk

i j−M jpk
ji ∼N (0,σ2) (5)

Thus, the maximum likelihood estimate gives us `2 optimization prob-
lem which was solved by Krishnan et al. [5]. We instead formulate the
problem in terms of outliers and assume that the noise is small (and not
necessarily Gaussian)

Mipk
i j−M jpk

ji = Ok
i j (6)

Since the vector Oi j = [Ok
i j
>
. . .Oni j

i j
>
]> is sparse we can use the `1-norm

to impose this constraint. So our cost function is

E`1(M1 . . .MN) = ∑
(i, j)∈E

||Oi j||1 (7)

By using the approximation Mi = I+mi where mi is of the form

m =

 0 −ωz ωy ux
ωz 0 −ωx uy
−ωy ωz 0 uz

0 0 0 0

 (8)

we can reduce (7) to

E`1(x) = ||δδδ −Dx||1 (9)

where, x = [ωωω1 · · ·ωωωN u1 · · ·uN ]
T which can be solved iteratively (for an

available implementation see [2]).
It must be noted that the approximation (8) is valid only if ωωω i’s and

ui’s are small. Hence, the optimization cannot start from an arbitrary
point. For most cases, a good starting point can be obtained by an initial
pairwise ICP step. The implementation details are described in the paper.
We also show that when there are outliers, our method does significantly
better than the state-of-the-art algorithms.
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