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1 Overview

The supplemental material of our BMVC 2015 submission provides remaining information
to our method and additional quantitative and qualitative results. In Section 2 we visualize
the Huber approximation used in our regularization term and compare it to the ¢; and Huber
norm, respectively. Section 3 gives the proof to Proposition 1 that we used in the paper. In
Section 4 we show how to compute the gradient of our Global Regression Model (GRM)
in matrix-vector notation. Finally, we show some additional evaluations of our method in
Section 5.
2 Smooth Huber Approximation
In Figure 1 we compare the smooth Huber approximation
ne(r) = [l < el (—ghst* + 42+ 3 ) + [l > €]l (1)
that we use in the regularization term of the GRM with the standard Huber norm
2
n)= (el <el- (5% +5)+ el > el 1l @)
and the ¢; norm
G(r) =] 3)

Note that the Huber approximation is faithful to the Huber function.
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n(t)

Figure 1: Proposed smooth potential function compared to Huber function and the ¢; norm.

3 Proof to Proposition 1

Proposition 1. Let E(u; f(w, 1)) be strongly convex and twice differentiable with respect
to u. Further, let E(u; f(w,I},)) be differentiable with respect to f and let f(w, 1) be differ-
entiable with respect to w. Then the gradient of a differentiable loss L with respect to the
parameters w is well-defined and is given by

dL s LT 9’E

) ({(Vﬁ -1 } >

dw = durl Jdudw
Proof. Problem HL-LL can equivalently be rewritten in terms of the optimality conditions
of the lower-level problem:

“

up=uy

K
min FZ (g, ve) st VyE(u; f(w, 1)) = 0. %)

weW,u, RN

Note that we will omit the explicit dependence of E(uy; f(w,I;)) on the parametrization
S (w, I;) for the rest of the proof in order to facilitate an uncluttered notation.

Problem (5) is an optimization problem with non-linear equality constraints. The La-
grangian of this function is given by

(u,w,y) = Z FL(ug,vie) + (VuE (u)) Ye- (©6)

The stationary points of the Lagrangian are characterized by the optimality conditions:

oL JdL J%E (uy) aL

2 9~ _ =
due  dup (Vi ()% =0, ;YT dudw o IV w @
G
o S ’

By substituting the minimizer of the lower-level problem u; (f(w, Ii)) for uy, condition C3 can
be eliminated, since it is full-filled by definition. From strong convexity of the energy E (u),
it follows that V2E (u) = 0. Thus the Lagrange multipliers % can be explicitly computed
from C;, which results in

NG v22 nA Nl Sl
7//<_ (VuE) auk'
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Substituting (8) into C, finally yields the gradient (4). O

4 Gradient Computations

In order to allow for convenient gradient computations, we reformulate the regularizer using
matrix-vector notation

N N

R(u) =YY ne(hij(wn,dc) (i —uj)) = p(WBu), ©9)

i=1j>i

where B € RM*N s a sparse matrix, which for each of the M edges (i, j) has a row with
an entry —1 at position i and 1 at position j. The matrix W = W (h;;(wp, 1)) € RM*M is a
diagonal matrix that facilitates the weighting of each edge, i.e.. we have

(WBu)ij :hij(wh,lk)(ui—uj). (10)
We further define
M
p(x) = an(x,), for x € RM. (11)
m=1

Using this notation the Hessian of energy (2) for a single example u; can be written as

V2E(u) = B'WD"WB+exp(wy)I, where D" = diag(n((WBu)y),...,n2((WBu)y))

(12)
Finally, the energy gradients with respect to the parameterizations are given by
9°E (u)
Judw, =exp (wp)(u—g(wg, 1))
9°E (u)
=— 13
Tudg = PO (13)
9°E (u)
= D'B+ diag(Bu)D"WB

where D' = diag(n,, (WBu)1),...,n,((WBu)u)).

5 Additional Evaluations

NYU2 We evaluated our method additionally on the NYU-Depth V2 dataset [1]. The
dataset contains 407,024 frames from a variety of indoor scenes captured with the Microsoft
Kinect v1. We use the subset of 1,449 frames that have aligned RGB images as ground-truth.
The set is split into 1,000 image pairs for training and the remainder was used for testing. In
order to simulate the acquisition process of a depth sensor, we add multiplicative Gaussian
noise with o € {0.2,0.5,0.7} to the depth maps.

The results on this dataset are depicted in Table 1. We compare the same methods as
in the denoising experiment in the paper. We can observe that our approach again performs
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Ours (NL)  Ours (L) CNN K-SVD  SAR-BM3D BM3D TGV-L2  TV-L1

c=02 2.852 2903  4.152 5.132 3.976 3.262 3.336 4.133
=05 4.616 4744 7.181 7.417 10.027 5.601 5.682 7.024
co=07 5.481 5.546 9213 9.117 13.209 6.983 6.729 8.671

Table 1: NYU2 denoising results: Quantitative comparison of our method with local regu-
larization (L) and non-local regularization (NL), to the plain CNN and several other state-
of-the-art methods over three noise levels on the NYU2 dataset. The error is measured as
RMSE in cm.

(a) GT &1 ‘ (b) Ours (c) CNN (d) BM3D (e) TGV-L2
Figure 2: Qualitative results on NYU2: The first column presents the ground-truth and
the noisy depth map input. The remaining columns depict the denoising results in the first
row and the absolute error in the second row, respectively. The input depth maps have a
multiplicative Gaussian noise with 6 = 0.5. The results as RMSE in ¢m for our method with
non-local regularization, the CNN output, BM3D and TGV-L2 are 6.106, 9.837, 15.758,
7.634, respectively.

best on this dataset and the non-local regularization improves the result when compared to
the local regularization.

An exemplar qualitative result on this dataset is presented in Figure 2. We can observe
that TGV-L2 produces smooth surfaces, but has difficulties in the background and near depth
discontinuities. BM3D struggles with the multiplicative noise and also with depth disconti-
nuities. Our method does not show these problems. However, the slanted surfaces are not as
smooth as with a higher-order regularization term.
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