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Abstract

Denoising and upscaling of depth maps is a fundamental post-processing step for
handling the output of depth sensors, since many applications that rely on depth data
require accurate estimates to reach optimal accuracy. Adapting methods for denoising
and upscaling to specific types of depth sensors is a cumbersome and error-prone task
due to their complex noise characteristics. In this work we propose a model for denoising
and upscaling of depth maps that adapts to the characteristics of a given sensor in a data-
driven manner. We introduce a non-local Global Regression Model which models the
inherent smoothness of depth maps. The Global Regression Model is parametrized by
a Convolutional Neural Network, which is able to extract a rich set of features from
the available input data. The structure of the model enables a complex parametrization,
which can be jointly learned end-to-end and eliminates the need to explicitly model the
signal formation process and the noise characteristics of a given sensor. Our experiments
show that the proposed approach outperforms state-of-the-art methods, is efficient to
compute and can be trained in a fully automatic way.

1 Introduction
The increasing availability of cheap consumer depth sensors enables a multitude of novel
applications, for example in gaming and gesture control. Depth sensors such as the Microsoft
Kinect have found their way into the mass market and Time of Flight (ToF) cameras, a type of
sensor that measures depth using the runtime of light, have recently become more and more
popular. Due to physical and manufacturing constraints, many consumer depth sensors, and
especially ToF cameras, provide noisy and low-resolution output. In order to generate useful
depth estimates, the data provided by the sensor is typically subject to post-processing steps
such as denoising and upscaling.
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Depth Global Only CNN Proposed Groundtruth

Figure 1: Our proposed method that combines a GRM with a CNN achieves better results
than the individual components (best viewed in color and zoomed in).

Methods for denoising and upscaling of signals, be it natural images, or depth data, cru-
cially rely on an accurate model of the observed noise. This is due to the fact that denoising
and upscaling are ill-posed problems, which require an in-depth understanding of the signal
formation process in order to yield accurate solutions.

The noise characteristics of depth estimates strongly vary with the type of the sensor
used for acquisition. Depth estimates from structured light sensors, such as the Kinect v1
will show different characteristic noise [23] compared to a ToF sensor [10], which is for
example integrated in the Kinect v2. Moreover, the noise in the estimated depth maps shows
a complex dependency on the depth and the form of the imaged surface. As a result it is in
practice difficult to accurately model the sensor noise.

We propose in this work a novel approach to circumvent the need to explicitly model the
noise characteristics of a depth sensor, if accurate reference data can be acquired. This is in
fact often possible: Manufacturers can either build or buy accurate depth sensors in order to
calibrate low-cost sensors before shipping, or use several measurements from a depth sensor
to build a high-quality model of a scene in an offline step [14]. Our approach utilizes Convo-
lutional Neural Networks (CNNs) [19] to parametrize a Global Regression Model (GRM),
which is motivated by non-local variational restoration models [2, 13]. We show how the
parameters of the CNN as well as the parameters of the GRM can be learned using a joint
end-to-end training procedure, recently proposed in the context of figure-ground segmenta-
tion [30], for the task of depth restoration. This training procedure results in a model that
combines the discriminative power of CNNs with the strong regularization properties of a
global model in a common framework.

Figure 1 shows an exemplar denoising result of the proposed approach and compares it
to the result of its individual parts, i.e. the global model without CNN parametrization, as
well as a plain CNN. We can observe that the proposed joint system performs better than its
individual components.

2 Related Work

There exists a large body of work discussing denoising of natural images. Among the most
successful and widely used are methods based on collaborative filtering [6] or sparse cod-
ing [9]. These methods implicitly assume a specific noise type, which is typically an additive
Gaussian distribution. This assumption is reasonable for natural images, but not necessarily
for other types of images, such as depth maps. However, adapting these models to differ-
ent noise distributions such as the noise encountered in SAR imagery [27] is challenging.
Moreover, these methods are modeled to the intrinsic statistics of natural images, which are
different from the statistics of depth data.

In contrast, variational models based on Total Variation like the famous ROF [31], TV-
L1 [5, 24], and in particular TGV-L2 [3] are well suited for depth data since their prior
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assumption fits to the smooth and textureless characteristics of depth maps. However, those
methods have the drawback that they model a specific noise distribution and the parametriza-
tion has to be chosen manually.

Another category of methods tackle this ill-posed problem by learning a mapping from
the degenerated signal to the original signal, e.g. from noisy input to clean depth maps, in
a data-driven manner. Similar to our method are CNN-based approaches for natural image
denoising [15], inpainting [37] and super-resolution [8], but also the conceptually related
Filter Forests [11] have shown good results for denoising natural images and depth maps.

While latter methods are learning based, they apply the inference on individual patches.
On the other hand, holistic approaches that learn a global and a local model in a common
system are more similar to our method and have shown excellent results for a variety of
tasks. Jancsary et al. [16] propose to learn the potentials of a Gaussian Random Field using
a decision tree. The approach is conceptually similar to our method, but showed inferior
results in image restoration when compared to state-of-the-art methods. There exist also a
few works with the similar idea of combining a CNN with a global model. Ning et al. [25]
use an Energy-Based model for sequentially training a CNN and a discrete graphical model
for image segmentation. Tompson et al. [35] utilize a CNN together with a single iteration
of belief propagation on a graphical model for human body poses estimation. Baltrusaitis et
al. [1] use a perceptron to parametrize the potential of a Gaussian Random Field which are
used as patch-experts in subsequent applications. In contrast to those methods, our approach
optimizes a full global model jointly with a CNN. We achieve this by back-propagating the
gradients through the GRM and the CNN in a bi-level formulation.

For the depth upscaling task, state-of-the-art methods rely on a guidance image, based on
the assumption that depth discontinuities often occur at edges in the image domain. Diebel
and Thrun [7] applied a Markov Random Field to exploit this assumption. They weighted
the smoothness of their model with the gradient magnitude of the registered high-resolution
intensity image. Similar ideas have been also proposed in approaches that use joint bilateral
filters [4, 39]. Park et al. [26] formulated the depth map upscaling as a constrained least-
squares optimization problem by combining non-local means and an edge-weighting scheme
derived from the intensity image. A higher-order variational method with a strong regulariza-
tion term was introduced by Ferstl et al. [12]. Recently, Yang et al. [38] demonstrated good
results by applying a pixel-wise autoregressive model. They designed the coefficients of the
model with respect to non-local correlations in the intensity and depth data. Our approach
can also easily incorporate high-resolution guidance images for depth map restoration, but
can further learn to distinguish which image gradients correlate with depth discontinuities in
a data-driven manner.

3 Global Regression Model
Due to its ill-posed nature, denoising and upscaling is typically modeled as a regularized
energy minimization problem:

u∗ =argmin
u

E(u;w, I) = argmin
u

R(u;wr)+D(u, I;wd) , (1)

where I is the input data, e.g. the low-resolution noisy depth map acquired by the sensor, and
u∗ is the restored estimate. The data term D(u; .) encapsulates knowledge about the signal
formation process, whereas the regularization term R(u; .) imposes prior knowledge about

Citation
Citation
{Jain and Seung} 2009

Citation
Citation
{Xie, Xu, and Chen} 2012

Citation
Citation
{Dong, Loy, He, and Tang} 2014

Citation
Citation
{Fanello, Keskin, Kohli, Izadi, Shotton, Criminisi, Pattaccini, and Paek} 2014

Citation
Citation
{Jancsary, Nowozin, Sharp, and Rother} 2012

Citation
Citation
{Ning, Delhomme, LeCun, Piano, Bottou, and Barbano} 2005

Citation
Citation
{Tompson, Jain, LeCun, and Bregler} 2014

Citation
Citation
{Baltru²aitis, Robinson, and Morency} 2014

Citation
Citation
{Diebel and Thrun} 2005

Citation
Citation
{Chan, Buisman, Theobalt, Thrun, etprotect unhbox voidb@x penalty @M  {}al.} 2008

Citation
Citation
{Yang, Yang, Davis, and Nistér} 2007

Citation
Citation
{Park, Kim, Tai, Brown, and Kweon} 2011

Citation
Citation
{Ferstl, Reinbacher, Ranftl, Rüther, and Bischof} 2013

Citation
Citation
{Yang, Ye, Li, Hou, and Wang} 2014



4 RIEGLER, RANFTL, RÜTHER, POCK, BISCHOF: JOINT TRAINING OF A GRM AND CNNS

desirable solutions. Note that the energy depends on a set of parameters w = [wr,wd ]
T . This

is typically a small number of parameters that influence the amount of smoothing, or the
probability of seeing a depth edge at a certain position in the image.

The explicit form of R(u; .), D(u; .) and the parametrization of the energy requires expert
knowledge of the image formation process in order to yield good estimates u∗. To address
this problem, we propose to parametrize the energy by a complex and highly non-linear
function, and learn the parameters w from ground-truth data. As a result, the model adapts
the parameters in a data-driven way. Moreover, the error-prone manual selection of suitable
parameters w is completely eliminated.

We choose the parametrization to be given by a CNN, since this choice has several advan-
tages: (1) CNNs are able to learn highly discriminative features directly from the input data,
without the need for hand-crafted features. This makes them widely applicable and easily
adaptable to novel input modalities. (2) They are trained using gradient-based optimization.
Specifically, the back-propagation rule allows for efficient computation of the gradient of a
large number of parameters. Moreover, the back-propagation rule can be adapted to accom-
modate for a global model [30]. This enables a joint end-to-end training of the complete
model. (3) CNNs can be efficiently evaluated on GPUs, which allows for an overall fast
execution, provided that the global model can be solved efficiently.

GRM Definition We assume that all information, which is provided by the depth sensor,
is encapsulated in Ik, i.e. Ik is a multi-channel image that either includes depth and possibly
intensity images. In the case of a ToF sensor Ik could for example be the depth map and the
infrared image. We propose to use a Global Regression Model (GRM) to estimate a depth
map from the input data Ik:

E(u; f (w, Ik)) = R(u,h(wh, Ik))+
exp(wλ )

2
‖u−g(wg, Ik))‖2. (2)

Here, R(u,h(wh, Ik)) is a regularization term, which is parametrized by the function h(wh, Ik).
This term introduces prior knowledge, which will be learned from available training data via
the parametrization h(wh, Ik). Similarly, the function g(wg, Ik) can be used to transform the
input data to a form such that the global model can make reliable estimates. This function,
again, will be learned from training data in our joint training procedure, which we detail
later. The scalar smoothness parameter wλ , which is also learned, allows us to find a trade-
off between prior knowledge and the likelihood of the given estimate g(wg, Ik). We apply
the exponential function to this parameter to ensure that the weighting is non-negative. It is
important to note that the functions h(wh, Ik) and g(wg, Ik) may share parameters, i.e. subsets
of wh and wg can be equal, i.e. the weights of a CNN.

As a regularizer, we propose a non-local pairwise model:

R(u) =
N

∑
i=1

N

∑
j>i

nε(hi j(wh, Ik) · (ui−u j)), (3)

where nε denotes a convex, twice differentiable potential function. Further, we impose the
constraint that the factors hi j(wh, Ik) are non-negative to ensure an overall convex regu-
larizer (3). We use a twice continuously differentiable approximation of the Huber func-
tion [18]:

nε(t) = [|t| ≤ ε] ·
(
− 1

8ε3 t4 + 3
4ε

t2 + 3ε

8

)
+[|t|> ε] · |t| , (4)
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where the small positive constant ε defines the threshold between the linear portion of the
potential and the smooth polynomial part, and [.] denotes to the Iversion bracket.

The definition for the regularizer is similar to the discretized non-local Total Varia-
tion [2, 13], where the non-smooth `1 penalty was replaced by a smooth penalty. The Hu-
ber approximation has two important merits when compared to the `1 penalty: Like the `1
penalty it allows for sharp discontinuities in the depth maps, but does not favor piecewise
constant solutions, which alleviates the problem of stair-casing on slanted surfaces [36].
Second, in contrast to the `1 penalty, the proposed potential function is twice continuously
differentiable, which makes a gradient-based training scheme feasible [30]. We present a
visual comparison of the different penalties in the supplemental material.

The regularizer (3) is parametrized by functions hi j(wh, Ik), i.e. the strength of the inter-
action between pixels i and j is determined by a complex non-linear relationship. This is
different from previous approaches for modeling non-local interactions [13, 36], where the
interactions are given by simple bilateral or even constant weights [33]. To ensure that the
model remains tractable, we adopt a translation-invariant parametrization for the regulariza-
tion term:

hi j(wh, Ik) = [d(i, j)≤ T ]exp(−(hd(i,j)(wh, Ik))
2) (5)

where d(i, j) denotes the distance between pixels i and j in the image plane. The resulting
parametrization of edges between pixels is thus determined by their distance alone, not by
their absolute position. This definition fits very well with the translation invariant nature of
CNNs. Moreover, setting the parametrization to 0 outside of a certain range T allows for
efficient optimization of the model. We use Nesterov’s Accelerated Gradient method [22] to
optimize the GRM.

Parametrization We propose to use a CNN to parameterize energy (2). In general, a CNN
consists of several layers that perform a linear transformation of the data, e.g. convolution,
followed by a non-linearity, e.g. rectified linear unit (ReLU) [21]. In the remainder of this
work we will use the following CNN architecture: First, we have a convolutional layer with
32 filters, each of size 9×9 pixels. On these feature maps, we apply a ReLU as non-linearity.
In the second layer we again have a convolutional layer with 32 filters, each of size 5× 5
pixels and use a ReLU as non-linearity. In the last layer, we have two different outputs. One
for the data-term g(wg, Ik) and one for the regularization h(wh, Ik). Both are implemented as
convolutions of size 3×3 and only differ in the number of output channels.

The network is directly applied to the raw input data, i.e. depth map and optionally an
intensity image. For the denoising task no further pre-processing steps are involved. For
upscaling, we resize the input data to the desired output resolution using bicubic interpolation
as in [8].

Joint Training We assume that K pairs of sensor images Ik together with their ground-truth
vk are given for training the model. We formulate the training task as a bi-level problem [30]:

min
w∈W

1
K

K

∑
k=1

L(u∗( f (w, Ik)),vk)︸ ︷︷ ︸
HL

s.t. u∗( f (w, Ik)) = arg min
u∈RN

E(u; f (w, Ik))︸ ︷︷ ︸
LL

. (6)

We will call HL the higher-level problem and LL the lower-level problem. This formulation
of the training problem has an intuitive interpretation: The task of the training procedure is
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to find parameters w for the energy E(u; f (w, Ik)), such that the minimizer u∗( f (w, Ik)) of the
energy yields low training loss L(u∗( f (w, Ik),vk)). Note that if the LL problem is assumed to
be of the form (1), the parametrization f (w, Ik) may influence the data term, the regularizer
or both. Specifically, in view of (2), we have f (w, Ik) = [h(wh, Ik), g(wg, Ik), wλ ]

T .
In practice bi-level problems are challenging to optimize even for a small number of vari-

ables w and u, due to their highly non-convex nature. The following proposition, however,
provides conditions which will allow us to compute gradients of the HL problem, and simul-
taneously satisfy the constraint given by the LL problem, even for large-scale problems∗:

Proposition 1. Let E(u; f (w, Ik)) be strongly convex and twice differentiable with respect
to u. Further, let E(u; f (w, Ik)) be differentiable with respect to f and let f (w, Ik) be differ-
entiable with respect to w. Then the gradient of a differentiable loss L with respect to the
parameters w is well-defined and is given by

∂L
∂w

=−
K

∑
k=1

([(
∇

2
uE
)−1 ∂L

∂uk

]T ∂ 2E
∂u∂w

)∣∣∣∣
uk=u∗k

. (7)

Remark. Note that

∂ 2E(uk)

∂uk∂w
=

∂ 2E(uk; f (w, Ik))

∂uk∂ f
∂ f (w, Ik)

∂w
, (8)

which shows that a necessary condition for the computation of the gradient (7) is differen-
tiability with respect to the parametrization f (w, Ik).

An interesting property of this scheme is that it can be interpreted as back-propagation:
If the parametrization is a CNN, the gradient for a single training example can be computed,
by back-propagating the quantity

∆E =−
([(

∇
2
uE
)−1 ∂L

∂uk

]T ∂ 2E
∂uk∂ f

)∣∣∣∣
uk=u∗k

(9)

into the network. Hence, integration of the global model within existing CNN frameworks is
straight-forward.

while not converged
1. Sample B instances from training set
2. ∆w← 0
3. For each b ∈ B solve

- u∗b = argminu∈RN E(u; f (wk, Ib))

- Compute ∆L = ∂L
∂ub

(u∗b,vb)

- Compute H = ∇2
uE(u∗b, f (wk, Ib))

- Solve the linear system Hγ = ∆L
- Compute ∆E = γT ∂ 2E

∂ub∂ f (u
∗
b, f (wk, Ib))

- Compute ∆wb by backpropagating ∆E
- Set ∆w← ∆w−∆wb

4. Update wk+1← wk−α∆w
Algorithm 1: GRM Gradient Evaluation

The proposed scheme for gradient computa-
tion allows to handle large-scale data, i.e. a large
amount of model parameters, as well as typical
image sizes of u. For a large body of training
data, repeated evaluation of the gradient quickly
becomes infeasible, since the LL problem has to
be solved for each training image in every gradi-
ent evaluation. This problem can be alleviated by
using batch stochastic gradient descent, where in
each step only a random subset of the training
images has to be considered. A basic stochastic
gradient descent scheme, which shows the necessary computations for the gradient evalua-
tion is summarized in Algorithm 1.

∗Proof in the supplemental material.
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Note that energy (2) is strongly convex with modulus exp(wλ ) and fulfills the necessary
conditions on differentiability. Thus, Algorithm 1 can be used to learn the GRM. The ex-
act expressions for the necessary gradients and the Hessian are given in the supplemental
material.

Practical Considerations The GRM was integrated as a custom layer in the Caffe frame-
work [17]. The back-propagation step to compute the weights of the parametrization is
entirely handled by the Caffe framework and allows to incorporate a diverse set of layer
types into the parametrization. We use stochastic gradient descent with a Nesterov-style
momentum term [34] to train the CNN. To allow for an overall faster training procedure,
we pre-train the CNN on a training set of patches having a size of 32× 32 pixel. For the
data term, the training target is given by the ground-truth depth maps, while for the pairwise
potentials ground-truth data was generated by extracting edges from the depth maps. In the
pre-training phase we optimize the joint quadratic loss over the depth estimates and gradient
estimates:

L([g(wg, Ik),h(wh, Ik)]
T ,vk) =

1
2‖g(wg, Ik)− vk‖2

+ 1
2

N

∑
i=1

P

∑
j=1
‖hi j(wh, Ik)− ((vk)i− (vk) j)‖2.

(10)

The pre-training was carried out for 250,000 iteration with an initial learning rate of 10−5

and the momentum set to 0.95. After 200,000 iterations the learning rate was decreased to
10−6. The pre-trained weights are used to initialize the full model (CNN+GRM), where we
optimize the quadratic loss

L(u∗k( f (w, Ik)),vk) =
1
2‖u

∗
k( f (w, Ik))− vk‖2. (11)

The full model was trained for 60,000 iterations with an initial learning rate of 10−7. We
again decreased the learning rate after 55,000 iterations to 10−8.

4 Evaluation
This section presents quantitative and qualitative results of our method. We perform an
extensive evaluation for two tasks: depth map denoising and upscaling. We compare our
method to current state-of-the-art algorithms for different noise characteristics and validate
the flexibility and effectiveness of our proposed method.

Denoising For the depth map denoising experiments, we use the New Tsukuba dataset
[20, 28]∗. The dataset consists of 1,800 realistically rendered depth maps paired with aligned
color images.We split the dataset into a training set that consists of the first 1,500 images
and a test set that includes the remaining 300 images. To simulate the acquisition process
of a depth sensor, we add multiplicative Gaussian noise with σ ∈ {0.1,0.5,0.7} to the depth
maps and additive Gaussian noise with σ = 0.2 to the intensity images.

For our proposed method we evaluated a non-local regularizer (NL), where the distance
threshold T was set to 2. This corresponds to a non-local neighborhood of 5× 5 pixels.
Further, we compare this to a simpler local model (L), where each pixel is only connected to
its direct neighbors in a 4-connected neighborhood.
∗The supplemental material includes additional evaluations on the NYU2 dataset [32].
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Ours (NL) Ours (L) CNN+GRM CNN K-SVD SAR-BM3D BM3D TGV-L2 TV-L1

σ = 0.2 2.052 2.175 2.802 4.880 4.968 2.715 2.260 2.664 2.781
σ = 0.5 3.335 3.538 3.835 6.916 6.696 7.252 4.133 4.782 4.949
σ = 0.7 3.965 4.084 4.384 10.901 7.900 9.326 5.200 5.621 6.191

Table 1: Quantitative evaluation of our method on the New Tsukuba dataset. The error is
measured as RMSE in cm.

(a) GT & Input (b) Ours, 0.949 (c) CNN, 5.143 (d) BM3D, 3.393 (e) TGV-L2, 4.193

5.7m

1.2m

0.8m

0.1m

Figure 2: Qualitative results on New Tsukuba, σ = 0.2. The first column presents the
ground-truth and the noisy input depth map. The remaining columns show the denoising
results in the first row and the absolute error in the second row, respectively. The numbers in
the sub-captions denote to the RMSE in cm.

The results of our evaluation are summarized in Table 1. In addition to our proposed
methods with non-local (NL) and local (L) regularization, we evaluate the performance of
the pre-trained CNN alone and of the CNN with the GRM on top of it, but without joint
training. Finally, we report the results of several state-of-the-art denoising methods, i.e.
K-SVD [9], SAR-BM3D [27], BM3D [6], TGV-L2 [3] and TV-L1 [5, 24]. All numerical
results are in terms of the root mean squared error (RMSE) in cm.

It can be seen that our approach outperforms all other methods. The proposed non-local
regularization improves the results over the simple local model. We can further observe that
the joint training of the full model leads to a significant improvement, as the parameters of
the CNN adapt to the GRM. The performance of the other methods significantly depends on
the noise distribution they model. K-SVD has almost a twice as high RMSE when compared
to TV-L1, or TGV-L2, which has a very strong and suitable regularization term.

In Figure 2 we present additional qualitative results of a subset of the evaluated methods.
We can observe that BM3D has problems with over-smoothing at edges and multiplicative
noise, especially in the background. While TGV-L2 generates visually very appealing re-
sults, it produces larger errors near depth discontinuities and in the background. In contrast,
our method is accurate near depth boundaries and handles the increased noise in the back-
ground better.

Different Noise Characteristics One of the main advantages of our proposed method is
that the CNN parametrization is able to adapt to different noise characteristics. We evaluate
this behavior with two more data dependent noise distributions and Salt & Pepper noise on
the New Tsukuba dataset. The first noise type is given as in [26] by adding Gaussian noise
with µ = 0 and a depth dependent sigma σd = 0.5d. For the second noise type, we use a
depth-dependent Poisson noise with λ = 10−3 as in [11]. Finally, we evaluate Salt & Pepper
noise, where we set 35% of the pixels to either the maximum or the minimum depth value.

The numerical results of this experiment are shown in Table 2. Our method is able to
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Ours (NL) CNN K-SVD SAR-BM3D BM3D TGV-L2 TV-L1

Local Variance σd = 0.5d 2.730 3.913 5.741 4.616 3.178 3.042 4.006
Poisson λ = 10−3 3.4016 8.660 6.695 7.279 4.129 10.595 4.958
Salt & Pepper p = 0.35 10.484 18.880 81.685 89.929 77.010 80.764 97.420

Table 2: Quantitative results on different noise distributions. The error is measured as
RMSE in cm.

(a) IR (b) Depth (c) GT (d) Ours (e) Error

Figure 3: Qualitative results of our method on ToF data. RMSE to ground-truth is 0.49cm.

learn a good parametrization for all different noise characteristics. In contrast, the compared
methods inherently have problems with noise types, which differ from their model assump-
tions. This is especially pronounced in the case of Salt & Pepper noise, that can not be
handled by any method, except the CNN and our proposed method.

Upscaling Dong et al. [8] showed in their work that a CNN can be effectively utilized for
natural image upscaling. They resize the low-resolution image in a pre-processing step to the
output resolution using bicubic interpolation and learn the mapping from the pre-processed
images to the ground truth high-resolution images. In our experiment we follow the same
principle, as we first upscale the low-resolution depth map by bicubic interpolation and then
apply a CNN, but with the GRM on top of it.

Ours (NL) Ours (L) CNN Ferstl et al.

×2 2.940 3.042 6.427 3.834
×4 4.530 4.813 8.411 5.506

Table 3: Upscaling results of our method
with non-local (NL) and local (L) regulariza-
tion compared to the CNN [8] and the method
by Ferstl et al. [12]. The error is measured as
RMSE in cm.

To evaluate the upscaling capabilities
of our method, we use the New Tsukuba
dataset with the same train and test split
as before. We resize each depth map by
a factor of s ∈ {2,4} and add multiplica-
tive Gaussian noise with zero mean and
σ = 0.2 to the low-resolution data. We
compare our non-local model (NL) and the
local model (L) with the results of a plain CNN, which is similar to the method of [8], and a
state-of-the-art image-guided depth map upscaling method by Ferstl et al. [12].

We present the quantitative results in Table 3. We can see that our proposed method
yields the lowest overall RMSE, and that the non-local regularization gives better results
than the local variant. In contrast to natural image super-resolution, the CNN alone is not
able to reach state-of-the-art performance.

ToF Denoising In a last experiment we qualitatively evaluate our approach for denois-
ing on a consumer ToF depth camera [29]. To generate train and test data, we constructed
five different static scenes and recorded each scene from several different view-points. The
ground-truth is obtained by taking the per-pixel median over 500 images of each scene for a
fixed view-point. We present qualitative results of our approach on a test image in Figure 3.
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5 Conclusion
In this paper we introduced a Global Regression Model (GRM) for denoising and upscaling
of depth maps. The model uses a complex non-linear parametrization of the GRM which
is given by a Convolutional Neural Network (CNN). The parameters of the model can be
trained jointly in an end-to-end fashion, which enables the model to adapt to the character-
istics of a given sensor in a data-driven manner. Our experiments show that the model is
indeed able to learn different noise characteristics and consistently outperforms specialized
state-of-the-art methods for different noise types. We further showed the applicability to
depth map upscaling and qualitative results on real Time-of-Flight data. In future research
we want to incorporate even more powerful regularization terms into the GRM, such as a
smooth approximation of TGV. Finally, we see potential of our method for computer vision
tasks that can benefit from a joint learning of a global model and its parametrization.
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