Depth Restoration via Joint Training of a Global Regression Model and CNNs
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Depth sensors have become increasingly popular in the recent years for a
wide range of applications. Among these are video games, gesture con-
trol, and applications in the automotive industry. However, the noise and
the resolution of depth sensors are problematic. To generate useful depth
estimates, the data provided by the sensor is typically subject to post-
processing steps. In this work we propose a method that combines a
global regression model with a convolutional neural network (CNN) to
tackle those problems. Global models, such as TGV-L2 [1, 3], are well
suited for the restoration of depth maps, since their prior assumption mod-
eled in the regularization term fit the piecewise affine nature of the data.
The data term in these models is designed based on fixed assumptions
about the underlying sensor noise, however. Instead of fixed a-priori as-
sumption about the data, we propose to parametrize a global model using
a CNN and learn the parameters of the complete system end-to-end in a
data-driven way. In this way, our model can automatically adapt to the
underlying noise characteristics of the data.

To estimate accurate depth from an input /;, we use a Global Regres-
sion Model (GRM) of the following general form
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Here, R(u,h(wy,I;)) is a regularization term that introduces prior knowl-
edge and is parameterized by the function &(wy,I;). Similarly, the func-
tion g(wg,Ii) is used to transform the input data such that the GRM can
make reliable estimates. We use for both parameterization functions 4, g
a CNN. As regularizer we utilize a non-local pairwise model
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where 7 is a twice-differentiable approximation of the Huber function [4]
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To train the weights w = [wj,, wj ,we] T, we assume that K pairs of sen-
sor images Ij, together with their ground-truth v, are given. We formulate
the training task as a bi-level problem [6]:

K
min & Y L(u* (F(w, 1)), vi) (HL)
wew =1
s.t. ' (f(w, fi)) = arg min E(u; f(w, I)). (LL)

The training procedure can be interpreted as follows: Find parameters w
such that the minimizer «* of E(-) yields a small training loss L(-). We
proof in this work necessary conditions for the energy E(-) and the loss
L(-) that allows us to efficiently compute the gradient of the higher-level
(HL) problem with respect the weights w. If this conditions are satisfied,
we can compute the gradient as follows:
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This formulation fits nicely into the backpropagating scheme to train neu-
ral networks and enables us to train the GRM and the CNN in an end-
to-end fashion. Further, we can use stochastic gradient descent, or any
variation of it, to train the complete model.
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Figure 1: Our proposed method that combines a GRM with a CNN
achieves better results than the individual components alone.

Ours (NL) CNN K-SVD BM3D TGV-L2
Local Variance oy =0.5d 2.730 3913 5.741 3.178 3.042
Poisson A=10"3 3.4016 8.660 6.695 4.129 10.595
Salt & Pepper p=035 10.484 18.880 81.685 77.010 80.764

Table 1: Quantitative results on different noise distributions. The error is
measured as RMSE in cm.

Ours (NL) Ours (L) CNN Ferstl et al.
x2 2.940 3.042 6.427 3.834
x4 4.530 4813 8.411 5.506

Table 2: Upscaling results of our method with non-local (NL) and local
(L) regularization compared to the SRCNN [2] and the method by Ferstl
et al. [3]. The error is measured as RMSE in cm.

We evaluated our approach for depth map denoising and upscaling
on the New Tsukuba dataset [5S] for different noise types and levels. An
excerp of our quantitative results are presented in Table 1 and 2. Figure 1
depicts an exemplar qualitative result for the denoising task.

The evaluations demonstrate that the proposed GRM parameterized
with a CNN is indeed able to adapt to different noise characteristics and
performs better than the individual parts independently. Finally, we see
potential of our method in computer vision tasks that can benefit from
joint learning of a global model and its parameterization.
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