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Abstract
As the Internet and 3D modelling tools have led to an increasingly growth in the

number of available 3D models, it becomes necessary to have a proper and smaller rep-
resentation for searching purposes that captures the most important information about
shapes. A large number of encoding methods have been proposed in the literature to cre-
ate shape signatures from local descriptors. Two encoding methods have been receiving
most attention from researchers given its informative characteristics: Fisher Vector [9]
and Super Vector [36]. We propose to use these encoding methods combined with spec-
tral signatures to represent 3D shapes. Although spectral signatures have many desirable
properties to describe 3D shapes, for instance being invariant under rigid transforma-
tions and stable against non-rigid transformations, they do not perform so well in recent
benchmarks. We propose improvements to the Wave Kernel Signature by analysing its
behaviour when combined to different encoding methods for the purpose of shape re-
trieval and classification. At the end, we show a comparison of our method in two recent
benchmarks.

1 Introduction
A large number of local signatures have been created to represent local characteristics of
geometric shapes for the purpose of many computer vision, geometry processing and shape
analysis tasks. A local signature is a compact representation that characterizes a small region
of a shape. They usually capture information about the neighbourhood of a vertex and so
they can be directly applied to some important tasks like point correspondence and shape
segmentation. For this purpose, it is desirable to compute signatures that are invariant under
rigid, non-rigid and isometric deformations, the typical deformations that 3D models un-
dergo. However, local descriptors cannot be immediately applied to the problem of shape
retrieval, because this task is not addressed by comparing local signatures but by comparing
global descriptors (signatures that represent the shape as a whole). Creating a global de-
scriptor is not a simple task since shapes can have arbitrary number of vertices, edges and
faces. To create a generic representation of a shape all important characteristics should be
preserved during the encoding process. Even so, the global representation must compress
local characteristics using the same basis for all shapes in order to facilitate comparisons.

With the popularization of the Bag-of-Features paradigm (BoF), Ovsjanikov et al. [18]
and later Bronstein et al. [3] proposed to encode local descriptors to a global representation
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of the shape, removing the local dependence of each descriptor. They use Bag-of-Features
to obtain a visual word-based representation of the shape that can be compared efficiently.
They formulate their signature as the normalized probability of associating each geometric
word from the vocabulary with all vertices of the shape. The distance between two shapes
is given by a Hamming metric between the bag of features of each shape in the Hamming
space.

Recently, image retrieval and classification tasks have been improved [6, 27] by the use
of Fisher Vectors (FV) [9], which have many advantages over BoF [30]. Concisely, Fisher
Vector consists of representing a sample x by the concatenation of weighted deviations with
respect to the parameters of a model, describing the direction which the parameters should be
modified to fit the data. This model can be seen as a “probabilistic visual vocabulary" [30],
which can be represented by a Gaussian Mixture Model (GMM). The final FV representation
is very discriminative and can be used to describe the initial sample with applications in
retrieval and classification. FV has shown to be a more discriminative probabilistic descriptor
then the classical BoF, since it includes second-order statistics in its formulation [5].

1.1 Main Contribution

In this paper, we propose an efficient and discriminative encoding framework to address the
problem of creating global signatures for 3D models from local descriptors based on the
spectrum of the shape, for the purpose of shape retrieval and classification. In this way, we
propose the use of Fisher Vector to describe the entire representation of a shape. Differently
from [3, 18], our approach uses a Gaussian Mixture Model as a dictionary of probabilistic
visual words, and encodes the global signature using three orders statistics (0-th, 1-st, 2-nd)
rather than using only the first order. Further, while BoF generates a K-dimensional his-
togram, where K is the vocabulary size, Fisher Vector encoding generates a high-dimensional
vector with 2KD dimensions, where D is the size of each local descriptor, being more dis-
criminative but still simple to compare, as all shapes are encoded in the same basis.

We compare the use of three different spectral descriptors (the Heat Kernel Signature
(HKS) [31], the Scale-invariant Heat Kernel Signature (SI-HKS) [4] and the Wave Kernel
Signature (WKS) [1]) in recent benchmarks by encoding them using the Fisher Vector and
Super Vector paradigms. From that, we propose some improvements to the WKS descriptor,
since it overtakes HKS and SI-HKS in retrieval performance. A better scaling is proposed
for the eigenvalues of the Laplace-Beltrami operator which captures more information about
the shape and we also propose the use of principal curvatures to increase the efficiency of
the encoding method.

The rest of this paper is laid out as follows. Sect. 2 discusses works related to spectral
signatures, shape retrieval and encoding methods. Sect. 3 explains how to represent shapes
using encoding processes. In Sect. 4 we evaluate our method in recent benchmarks showing
the relevance of our improved method. Finally, Sect. 5 concludes the paper.

2 Related Works
Shape retrieval is a well-established research area that has many approaches and methods.
We are interested in the family of spectral methods, which uses the eigenvalues and eigenvec-
tors of the Laplace-Beltrami operator (LBO) defined on the shape, since they have many de-
sirable proprieties to tackle 3D shapes as they are invariant under isometric deformations and
stable against pose changes [31]. Moreover, the spectrum contains a considerable amount
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of geometric and topological information about the shape. For a more detailed explanation
about other methods of characterizing shapes we refer the reader to [32].

2.1 Spectral Methods

Creating signatures using the spectra of the shape was first addressed by Reuter et al. [23, 24].
In this seminal paper, the authors use a collection of eigenvalues of the LBO of a shape to
represent local properties. Although Reuter’s signature ensures that it can recognize isomet-
ric shapes, there exist compact non-isometric shapes that have the same spectra therefore
they cannot be fully distinguished by the eigenvalues of the LBO, and still it is not ro-
bust to noise and partial model matching. Rustamov [26] uses all the spectra (eigenvalues
and eigenvectors) of a shape to create the Global Point Signature (GPS). He proposes an
isometry-invariant shape embedding, where global signatures are computed by a histogram
of pairwise distances [17] between points in the embedding space. This approach solves the
previous problem of distinguishing non-isometric shapes with same spectra but introduces
the sign correction problem.

Sun et al. [31] introduced a deformation-invariant signature based on the heat kernel,
resolving the sign correction problem of the GPS. Named the Heat Kernel Signature (HKS),
it is based on the behaviour of the heat diffusion over the surface of the shape governed by
the heat equation. Although the HKS can describe a shape at multiple scales (at different
times) it is not scale-invariant. Later, Bronstein and Kokkinos proposed a normalization to
the HKS making it scale-invariant (SI-HKS) by translating and scaling the signature [4].

Recently, Aubry et al. [1] introduced the Wave Kernel Signature (WKS), which evaluates
the probability of measuring a quantum mechanical particle at a specific location x ∈ X
by varying its energy e. Aubry et al. use the Schrodinger equation governed by the wave
function Ψ(x, t) to describe the quantum mechanical behaviour of particles over a object
surface. Furthermore, improvements in the WKS descriptors by directly operating on their
weights were previously tackled by [25, 35].

2.2 Shape Retrieval and Encoding Methods

The idea of creating shape signatures from local signatures is neither new nor straightfor-
ward. The usual way to describe a set of local descriptors into a shape-level signature for
retrieval and classification purposes is building a Bag-of-Features model to remove the local
dependency of each descriptor by writing local properties as a histogram of their occur-
rences. Although recent approaches mainly use the classical BoF, the use of other encoding
methods can bring many advantages over the traditional method. For instance, the Fisher
Vector combines the strengths of generative and discriminative models [19]. While the BoF
characterizes a sample by the number of occurrences of visual words, FV is characterized by
the deviation from a probabilistic vocabulary. Chatfield et al. [5] states that Fisher Vector and
Super Vector encodings are better than other encoding methods, since they carry extra infor-
mation about the displacement between descriptors and visual words. In the next paragraphs
we review the principal methods that use encoding methods related to BoF paradigm.

Recently, Ovsjanikov et al. [18] and Bronstein et al. [3] have used BoF to combine
spectral signatures (HKS and SI-HKS, respectively) to represent shapes, removing the local
dependence of each local descriptor by describing the probability of occurrence of each
visual word (local descriptor) in a geometric vocabulary. Later, Litman et al. [16] developed
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a supervised learning approach to construct the dictionary of BoF model, showing significant
improvements in performance over the compared methods.

There are other signatures that also make use of the BoF framework but do not use spec-
tral local descriptors. In [7], Furuya et al. use BoF to encode SIFTs generated by depth
images rendered in different views from a 3D model. In a recent benchmark of 3D shape
retrieval [12], Furuya and Ohbuchi [8] has also applied BoF to their local features. In a
benchmark of retrieval of non-rigid 3D human models [22], Tatsuma (Bag-of-Features ap-
proach with Augmented Point Feature Histograms), Bu (High-level Feature Learning for 3D
Shapes) and Li [11], besides Litman et al. [16], have encoded local features using BoF. In
other recent benchmarks [10, 13], the best results were obtained by techniques that have used
the BoF or similar frameworks.

The use of Fisher Vectors to classify and retrieve images has been recently addressed by
a number of researchers. Perronnin and Dance [19] applies FV to the problem of image cat-
egorization, Perronnin et al. [20] proposed a compressed form of FV to retrieve images in a
large database, Sanchez et al. [30] and Csurka and Perronnin [6] show that FV framework is
the state-of-the-art approach for classification and retrieval purposes since it has a more effi-
cient representation of an image. Takeyoshi and Kikinis [33] use FV to classify patients with
epilepsy, Schneider and Tuytelaars [27] applied FV in sketch classification and Simonyan et
al. [29] create a face descriptor achieving state-of-the-art performance on a challenge bench-
mark. The use of Gaussian Mixture Models (basic concept of FV) to characterize 3D shapes
was first experimentally addressed by [2].

On the other hand, Super Vector (SV) [36] has shown to be a good encoding to represent
local features. In a recent benchmark [15], SV was used to aggregate local features achieving
the best performance among other participants. In [13], Tatsuma used Super Vector to encode
features extracted from rendered depth buffer images also performing the best on that track.

3 Encoding Spectral Signatures
Similarly to images, encoding methods can be applied to shapes. Although shapes have
a complex structure in a 3-dimensional space, encodings can be applied effectively after
calculating proper local descriptors, which must respect the following properties:

1. Isometry-invariant signature: It is essential that a shape can be described by isometry-
invariant descriptors to avoid prior alignment (place the model in the same orientation).

2. Multi-level signature: It is necessary to describe a shape in multiple scales. For this,
all descriptors must have the same size though the number of descriptors still depends
on the shape (number of vertices).

The spectral signatures fulfil all these requirements. Each scale of the descriptors is seen as a
layer that describes the entire shape. Encoding methods are applied to these layers to encode
all the information in a high dimensional vector. Besides, there are other good properties
that descriptors should hold to properly represent shapes, for instance being stable against
non-rigid motions and stable against topology changes. Although these are very important,
they are not essential for the encoding process.

3.1 Encoding Local Descriptors
In order to encode local descriptors we need to characterize them by their deviation from a
generative model. Let X = {xt ,xt ∈ RD, t = 1...T} be a set of local descriptors of a shape S,

Citation
Citation
{Furuya and Ohbuchi} 2009

Citation
Citation
{Li, Lu, Li, Godil, Schreck, Aono, Burtscher, Fu, Furuya, Johan, Liu, Ohbuchi, Tatsuma, and Zou} 2014{}

Citation
Citation
{Furuya and Ohbuchi} 2013

Citation
Citation
{Pickup, Sun, Rosin, Martin, Cheng, Lian, Aono, Benprotect unhbox voidb@x penalty @M  {}Hamza, Bronstein, Bronstein, Bu, Castellani, Cheng, Garro, Giachetti, Godil, Han, Johan, Lai, Li, Li, Li, Litman, Liu, Liu, Lu, Tatsuma, and Ye} 2014

Citation
Citation
{Li, Godil, and Johan} 2014{}

Citation
Citation
{Litman, Bronstein, Bronstein, and Castellani} 2014

Citation
Citation
{Li, Godil, Aono, Bai, Furuya, Li, L{ó}pez{-}Sastre, Johan, Ohbuchi, Redondo{-}Cabrera, Tatsuma, Yanagimachi, and Zhang} 2012

Citation
Citation
{Li, Lu, Li, Godil, Schreck, Aono, Chen, Chowdhury, Fang, Furuya, Johan, Kosaka, Koyanagi, Ohbuchi, and Tatsuma} 2014{}

Citation
Citation
{Perronnin and Dance} 2007

Citation
Citation
{Perronnin, Liu, Sanchez, and Poirier} 2010{}

Citation
Citation
{SÃ¡nchez, Perronnin, Mensink, and Verbeek} 2013

Citation
Citation
{Csurka and Perronnin} 2011

Citation
Citation
{Vohra, Vemuri, Rangarajan, Gilmore, Roper, and Leonard} 2002

Citation
Citation
{Schneider and Tuytelaars} 2014

Citation
Citation
{Simonyan, Parkhi, Vedaldi, and Zisserman} 2013

Citation
Citation
{Aubry, Schlickewei, and Cremers} 2011{}

Citation
Citation
{Zhou, Yu, Zhang, and Huang} 2010

Citation
Citation
{Lian, Zhang, Choi, ElNaghy, El{-}Sana, Furuya, Giachetti, Guler, Lai, Li, Li, Limberger, Martin, Nakanishi, Neto, Nonato, Ohbuchi, Pevzner, Pickup, Rosin, Sharf, Sun, Sun, Tari, {Ü}nal, and Wilson} 2015

Citation
Citation
{Li, Lu, Li, Godil, Schreck, Aono, Chen, Chowdhury, Fang, Furuya, Johan, Kosaka, Koyanagi, Ohbuchi, and Tatsuma} 2014{}



LIMBERGER AND WILSON: SPECTRAL SIGNATURES FOR SHAPE RETRIEVAL 5

where T is the number of vertices and D the descriptor dimension, and λ = {wk,µk,Σk,k =
1...K} a set of parameters of a Gaussian Mixture Model pλ (Eq. (1)), where wk, µk and Σk
are respectively the weight, mean vector and covariance vector of the k-th Gaussian of the
GMM. We assume that covariances matrices are diagonal thus writing them as vectors. The
distribution of descriptors pλ (x) is given by:

pλ (x) =
K

∑
k=1

wkN (x|µk,Σk) :
K

∑
k=1

wk = 1 (1)

The Gaussian Mixture Model parameters are estimated using the Expectation Minimiza-
tion (EM) algorithm [30] in order to optimize a Maximum Likelihood criterion for the data
X . Differently from K-means algorithm that assigns each sample to a cluster, EM-algorithm
gives the probability of each sample belonging to each cluster.

3.1.1 Fisher Vector

The Fisher Vector encoding characterizes a large set of vectors by their three-order devia-
tion from a vocabulary, generating a high-dimensional gradient vector representation. The
gradient of the log-likelihood, also called Fisher score, describes the contribution of each
parameter to the generation process and is given by [9]:

GX
λ
= ∇λ log pλ (X) (2)

To compute the FV encoding, we write the local shape descriptors wrt. the probabilistic
model, which means expressing X by its gradient in respect to pλ . This is done by associating
each vector xt to a mode k in the GMM. First, we compute the association strength (soft
assignment) that is given by the posterior probability [19, 20]:

qtk =
exp[− 1

2 (xt −µk)
>Σ
−1
k (xt −µk)]

ΣK
i=1 exp[− 1

2 (xt −µ i)
>Σ
−1
i (xt −µ i)]

. (3)

Second, for each mode k and each descriptor dimension j = 1..D, we can compute the devi-
ation vectors (gradient) with respect to the mean and covariance, respectively

u jk =
1

T
√

wk

T

∑
i=1

qik
x ji−µ jk

σ jk
, (4)

v jk =
1

T
√

2wk

T

∑
i=1

qik

[(
x ji−µ jk

σ jk

)2

−1

]
. (5)

where σ jk are the square roots of the covariances Σk. Finally, the FV representation of a
shape S is the concatenation of the vectorization of the matrices u jk and v jk

ΓFV = [...u>k ..., ...v
>
k ...]

> (6)

To properly compare shape signatures (ΓFV ) we have also applied L2 Normalization and
Power Normalization to the Fisher Vector, also known as the Improved FV [21].
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3.1.2 Super Vector

Super Vector encoding is similar to the Fisher Vector encoding. In their framework Zhou
et al. [36] perform a nonlinear map to create a high-dimensional sparse vector. Differently
from FV, SV only considers the zero and first order differences between descriptors and
Gaussian means. Instead of considering the second order differences, they add a component
related to the mass of each cluster. Thus, the magnitude of their signature is K(D+1). The
Super Vector encoding can be calculated by the following expressions [5]:

pk =
1
N

N

∑
i=1

qik sk = s
√

pk uk =
1
√

pk

N

∑
i=1

qik(xt −µk) (7)

where s is a constant that balances sk and uk numerically. As can be seen in Eq. (7), the SV
encoding normalizes elements by the square root of the posterior probability (

√
pk) instead

of the prior probability (
√

wk). The final descriptor is given by the following concatenation:

ΓSV = [s1,u>1 , ...,sK ,u>K ]
> (8)

Using either the Fisher Vector or the Super Vector as shape descriptor, we define the
distance between two shapes R and S as the L1 distance between their encodings (Γ):

d = ∑ ||Γ(R)−Γ(S)||1 (9)

3.2 Improving WKS for Shape Retrieval
There are requirements so that a signature can perform well in shape retrieval benchmarks.
These requirements concern the different shape transformations that a signature should be
invariant to, for example, rigid-motions, noise, holes, etc. Therefore, we propose two im-
provements to the Wave Kernel Signature (informative scaling and curvature aggregation)
so it can be more discriminative over the encoding process. We chose to improve the WKS
since it achieves better performances for shape retrieval among other spectral signatures. Be-
sides those two improvements, we consider the case of the shape being disconnected, which
means that it may have more than one connected component. Following the Laplacian ma-
trix property, which states that the eigenvalues will have as many zeros as the number of
connected components in the graph, we remove all zeros from the eigenvalues rather than
only one.

3.2.1 Informative Scaling

The Wave Kernel Signature uses the logarithmic scaled versions of the Laplace-Beltrami
eigenvalues to compute its signature based on the fact that the variation of eigenvalues for
articulated shapes are log-normally distributed. The WKS is computed by Eq. (10), where
fE is a distribution that properly characterizes shape properties at different scales and Ce
normalizes the sum.

WKS(x,e) =Ce

∞

∑
k=1

φk(x)2 fE(Λk)
2 fE(Λk)

2 = e
−(e−log(Λk))

2

2σ2 (10)

We have analysed the influence of this scaling to the computation of the signature and
we concluded that it loses high frequency information about the spectrum of the shape (even
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important high frequencies that do not originate from noise are blurred). Then, we analysed
the distributions of the differences between eigenvalues of 24 articulated woman shapes, as
can be seen in Image 1. By analysing the differences of the eigenvalues (left), we propose to
use the cubic root scaling rather than the logarithmic scale since it fits much better a normal
distribution, which is used to handle the differences between same-class shapes.

Λ
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Figure 1: Histograms of the differences between the eigenvalues of the Laplace-Beltrami
operator of 24 articulated woman shapes. (left) Histogram of the differences not scaled.
(right) Histogram of the differences scaled by the cubic root. On each graph, the red line is
a reference normal distribution fitted to the respective histogram.

sc
al

e

sc
al

e

number of eigenvalues number of eigenvalues
Figure 2: Weightings of the eigenfunctions of the LBO for a shape using the logarithmic
scale (left) ( fE(Λk)

2) and the power scale (right) ( fC(Λk)
2). We use σ = 3.75 ∗ (λ1−λ2),

where λ1 and λ2 are the respective scaled versions of the first and second eigenvalues.

The cubic root scaling also keeps more information at every energy scale than the loga-
rithmic scale. Figure 2 shows the behaviour of the weightings when using logarithmic scale
(left) (Eq. (10)) and our power scale (right) (Eq. (11)). We use power scale equal to 1

3 (cu-
bic root) in Figure 2 and in all our experiments. Note that the weightings (100× 300) will
be multiplied by the squared eigenfunctions of the LBO (300×V ) to output the signature
(100×V ), where V is the number of vertices (using the first 300 eigenvalues and eigenfunc-
tions). This way, every row of the weighting corresponds to the weighting of every energy
scale and therefore it is possible to note that the last frequencies will be blurred by the WKS
weighting since they are very similar. When using power scale, the weighting is more robust,
capturing information about all the shape spectrum and not blurring any scale.

fC(Λk)
2 = e

−(e− 3√Λk)
2

2σ2 e ∈ [ 3
√

λmin,
3
√

λmax] (11)
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3.2.2 Curvature Aggregation

Encoding methods are based on the differences between descriptor histograms and a proba-
bilistic model. The more discriminative these histograms are the more the encoding process
will be able to distinguish between shapes of different classes. We have noticed that when
shapes undergo pose changes, the maximum principal curvature of the vertices remains sta-
ble. This is a local feature of the surface, which is isometry invariant and stable at most
points under object articulation but not well coded in the WKS. Therefore, as another im-
provement to the shape retrieval task, we propose the use of principal curvatures to increase
the separation of features leading to a more discriminative histogram. Practically, we shift
the WKS individually by the maximum principal curvature c for each vertex x as stated in
Equation (12). We smooth the maximum principal curvature by taking the mean of the re-
spective neighbour vertices to diminish the influence of noise. In (12), α is a weight that
normalizes c accordingly to the signature values. We use α = 0.015 in all our experiments.

IWKS(x,e) =Ce

∞

∑
k=1

φk(x)2 fC(Λk)
2 + cxα (12)

4 Evaluation
In the following we present experimental results of our approach applied to the problem of
shape retrieval. We compare two encoding methods: Fisher Vector and Super Vector when
combined with HKS, SI-HKS, WKS, and IWKS (our Improved WKS). We first compare
their performance on the most recent SHREC’15 benchmark [15]. In SHREC databases, the
output of a shape retrieval task is a dissimilarity matrix N×N, where N is the number of
models and the entry (i, j) is the difference between models i and j. Using a classification
file, which tells the class of each shape, we compute different standard retrieval measures:
Nearest neighbour (NN), First-tier (FT), Second-tier (ST), e-Measure (E), Discounted Cumu-
lative Gain (DCG). For a more detailed explanation about each measure we refer to reader to
[28]. Table 1 compares these different retrieval measures. In bold are shown the best retrieval
performances for each measure. As shown, FV-IWKS performs better than others. In Figure
3 is shown the Precision and Recall curves of the evaluated methods in the SHREC’15.

Method NN FT ST E DCG
FV-HKS 0.9567 0.7489 0.8292 0.6661 0.9134
FV-SIHKS 0.9658 0.8104 0.8770 0.7102 0.9382
FV-WKS 0.9725 0.8628 0.9183 0.7511 0.9553
FV-IWKS 0.9975 0.9463 0.9801 0.8102 0.9884
SV-HKS 0.9217 0.6168 0.7061 0.5564 0.8539
SV-SIHKS 0.9642 0.7559 0.8371 0.6698 0.9222
SV-WKS 0.9600 0.7685 0.8520 0.6842 0.9243
SV-IWKS 0.9867 0.8748 0.9387 0.7649 0.9683

Table 1: Retrieval performance comparison of the different spectral signatures combined
with FV and SV applied to the SHREC’15 benchmark.

We also compare our best method (FV-WIKS) against the competitors of SHREC’11 [14]
and SHREC’15 benchmarks [15]. We show a comparison using the same retrieval measures:
NN, FT, ST, E and DCG. The SHREC’11 dataset contains 600 watertight 3D shapes, divided
into 30 classes with 20 models per class. Watertight means that meshes do not have holes,
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Figure 3: Precision and Recall plot of different spectral signatures (HKS, SI-HKS, WKS
and WKS) tested with FV and SV encoding methods applied to the SHREC’15 benchmark.
Colors represent different local descriptors. As shown, both the two best performances in
this benchmark use our proposed descriptor (IWKS).

cracks or missing features. In Table 2 we compare our retrieval performance in this dataset
against the best run of each group using five standard measures. The SHREC’15 dataset
contains 1200 watertight 3D shapes, divided into 50 classes with 24 models per class. The
models were selected from other public repositories and then were generated 23 deformed
versions for each model. Table 3 summarizes the retrieval performances of the top groups
from the contest in comparison to our method.

Method NN FT ST E DCG
Our method (FV-IWKS) 0.9983 0.9591 0.9860 0.7318 0.9937
SD-GDM-meshSIFT 1.0000 0.9720 0.9901 0.7358 0.9955
MDS-CM-BOF 0.9950 0.9127 0.9691 0.7166 0.9822
OrigM-n12-normA 0.9917 0.9153 0.9569 0.7047 0.9783
FOG+MRR 0.9600 0.8810 0.9461 0.6958 0.9586
BOGH 0.9933 0.8111 0.8839 0.6469 0.9493
LSF 0.9950 0.7988 0.8631 0.6327 0.9432

Table 2: Retrieval performance comparison of the best runs of the six groups that performed
better in SHREC’11 [14] against ours using five standard measures. In bold are highlighted
the best performances for each retrieval measure.

Settings. We use the same dictionary settings to compute the FV and SV encodings for every
spectral signature. We compute a probabilistic dictionary using the first 29 signature models
for each database and estimate a GMM with 38 Gaussians for each signature scale. To
calculate the signatures we compute the first 300 eigenvalues of the LBO for each model. We
evaluate the HKS and SI-HKS at the time interval [4ln(10)/λ300,4ln(10)/λ2] logarithmic
scaled, the WKS at the energy interval [log(λ2), log(λ300)], and the IWKS at evergy interval
[ 3
√

λ f ,
3
√

λ300], where λi corresponds to the ith eigenvalue of the LBO and λ f the first nonzero
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Method NN FT ST E DCG
Our method (FV-IWKS) 0.9975 0.9463 0.9801 0.8102 0.9884
SV-LSF_kpaca50 1.0000 0.9972 0.9997 0.8357 0.9997
HAPT_run1 0.9983 0.9657 0.9821 0.8150 0.9919
SPH_SparseCoding_1024 0.9975 0.9568 0.9696 0.8047 0.9885
CompactBoHHKS10D 0.9842 0.8714 0.9082 0.7465 0.9582
EDBCF_NW 0.9775 0.7931 0.8839 0.7076 0.9431
SG_L1 0.9725 0.7596 0.8143 0.6597 0.9192

Table 3: Retrieval performance comparison of the best runs of the six groups that performed
better in SHREC’15 [15] against ours using five standard measures. In bold are highlighted
the best performances for each retrieval measure.

eigenvalue. We sample 100 points in the interval of the HKS, WKS and IWKS. In the SI-
HKS, we use the first 6 lowest frequencies after scale normalization. After computing the
encodings, we reduce the data dimensionality to 50 by performing Gaussian KPCA [34].

By analyzing our performance in the SHREC’11 track it is clear that our approach im-
proves spectral descriptors to tackle shape retrieval problems since it achieves excellent re-
trieval measures (DCG very close to 1) and comparable results with best retrieval methods
(very similar e-Measure to SD_GDM-meshSIFT).

Although our method is very close to the best performing groups of SHREC’15, it is
not very clear why SV-LSF_kpaca50 performs relatively better than ours (Table 3) and at
the time of writing, full details of this algorithm have not been published. Nevertheless, our
method presents a much better performance when compared to other spectral descriptors,
showing the potential of these methods.

5 Conclusion
We have presented a detailed comparison of different spectral methods combined with infor-
mative unsupervised Bag-of-Features models: Fisher Vector and Super Vector. We proposed
some improvements that can be used with any spectral signature and a new scaling to be
used with the Wave Kernel Signature. Although our method does not beat all other groups in
the SHREC’11 and SHREC’15 benchmarks it is close to the best performances and achieves
excellent results in most benchmark classes. The results of this paper have shown that spec-
tral methods are a good choice to retrieve shapes when combined with informative encoding
methods but it still suggests further research.

We observed that the worst retrieval performances happen when shapes undergo huge
topology changes. In these cases, spectral signatures still need to be improved. In future
works, we plan to create a spectral signature that is less variant to major topology changes.
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