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Image alignment is often performed using variants of the Lucas-Kanade
algorithm [3]. Among these variants, the inverse compositional (IC) [1]
method and the efficient second-order minimization (ESM) [2] method
are the most efficient variants. While ESM is computationally more ef-
ficient for 2D image alignment problems such as homographies, IC is
more computationally efficient for image alignment problems using RGB-
D data where it is expensive to re-compute the Jacobian.

In this paper, we look at methods to accelerate the convergence of
IC and ESM algorithms while remaining robust to outliers. We pro-
pose a preconditioning strategy to perform inverse composition with re-
weighting and missing data which avoids the need to re-compute the Ja-
cobian and its Hessian at every iteration. We also consider how the effects
of image noise and/or spectral aliasing over the scale of the deformation
can be used to speed up the convergence of all these methods.

The inverse compositional Lucas-Kanade algorithm minimizes the
following cost function:

CIC = ∑
x
[T (M(x;∆p))− I(M(x;p))]2 (1)

with respect to ∆p. p is the parameter vector and x is the pixel location
in the template. M(x;p)) is a warping function which maps the pixel x in
the template T to a sub-pixel location I(M(x;p)) in the reference image I.
As Jx is computed using the template image T which does not depend on
p, it can be pre-computed as J(0). Equation (1) is minimized iteratively
in a non-linear least squares manner. The parameter vector p is related to
the error vector e as

J∆p = e. (2)

where J is the Jacobian. At each iteration, we form the normal equations

H∆p = JT e, (3)

where H = JT J is the Hessian. ∆p is then computed as ∆p = H−1JT e.
The re-weighted version of the problem can be posed as (JTWJ)∆p =
JTWe, where W is usually a diagonal matrix. Inverse composition with
re-weighting requires the Jacobian and Hessian to be re-computed at every
iteration.

Conventionally, the pseudo-inverse of the Hessian is computed using
Cholesky factorization. Here, we propose to perform a QR factorization
on the Jacobian J instead. This allows us to re-formulate Equation (2) as

Q
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]
∆p = e, (4)

where Q is an m×m orthogonal matrix where QT = Q−1, and R is an
m×n upper triangular matrix. The parameter updates ∆p can now be com-
puted as ∆p = R−1QT e. Without going into details here, the re-weighting
problem can be formulated as

∆p = R−1(QTWQ)−1QWe. (5)

The factors Q and R can be pre-computed. This leaves the weighting ma-
trix W and the term (QTWQ)−1 to be computed at every iteration. Here,
we propose to use a preconditioning approach to approximate (QTWQ)−1,
where the goal is to construct a matrix P such that the product P−1(QTWQ)
has a smaller condition number to QTWQ. We propose three precondi-
tioners, each with increasing complexity (see Figure 1). The first pre-
conditioner is a scaled identity matrix where every element in the diag-
onal represents the inverse of the average weight. The second precon-
ditioner is the Jacobi preconditioner, where the matrix P is a diagonal
matrix. Every element in the diagonal is computed by accumulating the
sum of weighted, squared elements in the corresponding column of the
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Figure 1: Left: Missing data and re-weighting causes the factor Q to
turn into a matrix Q̂ that is no longer orthogonal. Right: The proposed
preconditioners P. The product P−1(Q̂T Q̂) should be as close to I as
possible. Here, a darker shade represents a value closer to 1.0.
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Figure 2: Qualitative results showing the how the residual photometric
error changes with the number of iterations.

pre-computed factor Q. The last preconditioner extends the Jacobi pre-
conditioner to accumulate off-diagonal elements as well. Assuming that
the off-diagonal elements are close to zero, we approximate the inverse of
this preconditioner using a first-order Neumann series.

Finally, we also investigated the effects of noise and/or spectral alias-
ing over the scale of deformation affects the convergence of image align-
ment algorithms. We found that noise and/or spectral aliasing acts as a
regularizer term that damps the system and causes the parameter updates
to be underestimated. We showed that a moderate increase in the step size
of the parameter updates can further improve the convergence of image
alignment algorithms.

We have evaluated our proposed methods using different motion mod-
els such as affine warps, homographies, and SE(3) warps (see Figure 2),
and our experimental results show that our method is equally as robust as
the conventional re-weighted inverse composition while exhibiting faster
convergence rates. We found that the scaled identity and diagonal pre-
conditioners offer the best trade-off between computational efficiency and
robustness. For further details of our proposed method, including imple-
mentation details, experimental results, and a discussion, please refer to
the full paper.
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