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Abstract

To identify the location of objects of a particular class, a passive computer vision sys-
tem generally processes all the regions in an image to finally output few regions. How-
ever, we can use structure in the scene to search for objects without processing the entire
image. We propose a search technique that sequentially processes image regions such
that the regions that are more likely to correspond to the query class object are explored
earlier. We frame the problem as a Markov decision process and use an imitation learning
algorithm to learn a search strategy. Since structure in the scene is essential for search,
we work with indoor scene images as they contain both unary scene context information
and object-object context in the scene. We perform experiments on the NYU-depth v2
dataset and show that the unary scene context features alone can achieve a significantly
high average precision while processing only 20-25% of the regions for classes like bed
and sofa. By considering object-object context along with the scene context features, the
performance is further improved for classes like counter, lamp, pillow and sofa.

1 Introduction
The current prevalent object detection framework [7] is a pipeline of two main stages: the
object proposal stage and the feature extraction/classification stage. Object proposals are
image regions that with high probability significantly overlap with an object, irrespective of
object class. Features are extracted from object proposals and then a label is predicted. Even
with high quality object proposals, the typical number of proposals considered by the feature
extraction stage ranges from hundreds to tens of thousands for high resolution imagery.

Consider the situation where a computer vision system needs to identify the presence or
location of a particular object in an image. In a passive computer vision system, if we ask
a specific question like “Where is the table in this room?", it would process all the region
proposals in the image to detect a table instance. Such a vision system does not exploit the
structure in the scene to efficiently process the image. Our goal is to locate objects of interest
in an image by processing as few image regions as possible using scene structure. We build
on a region proposal module that generates candidate regions and a region classification
module that predicts the class label for a region. The generic strategy is to sequentially
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(a) Ranked sequence obtained from an object proposal technique.

(b) Sequence obtained from a search strategy that uses structure in the scene.

Figure 1: Searching for a table. Each step in the above sequence shows exploration of three
additional regions in the image. The search strategy learned using our method utilizes the
room structure and the presence of other objects in the image to discover the table region
much earlier than using the ranked sequence from an object proposal technique.

process image regions such that the regions that are more likely to correspond to the object
of interest are explored earlier. At each step, we use the labels of the explored regions and
spatial context to predict the likelihood that each unexplored region is an instance of the
target class. We then select a few regions with highest likelihood, obtain the class label from
the region classification module and add them to the explored set. The process is repeated
with the updated set of explored regions.

We frame our sequential exploration problem as a Markov Decision Process (MDP) and
use a reinforcement learning technique to learn an optimal search policy. However, it is
challenging to manually specify a reward function for the search policy. The true reward
function is unknown for our sequential exploration problem since the underlying distribution
from which a spatial arrangement of objects in an image is generated is unknown, analogous
to a game generated by a hidden emulator [12]. But we have access to an oracle’s actions in
the individual images. Learning an optimal policy in such situations is known as imitation
learning [1] where an oracle predicts the actions it would take at a state and the search policy
learns to imitate the oracle and predict similar actions. The oracle in our image exploration
problem selects the next set of regions to explore based on the groundtruth labels. We use the
DAgger algorithm of Ross et al. [14] that trains a classifier as the search policy on a dataset
of features extracted at states and actions taken by the oracle (labels), where the states are
generated by running the policy iteratively over the training data.

Intelligent search strategies can be learned only in domains that contain sufficient struc-
ture in the scenes. Frequently recurring patterns between the constituent objects of a scene
are essential to learn powerful strategies and predict exploration paths with high confidence.
Such structures can be found in indoor scenes of houses, stores and buildings. Hence we il-
lustrate our technique on the indoor scene dataset, NYU depth v2 [15]. The other advantage
of indoor scenes is the availability of depth data. Gupta et al. [9] showed that RCNN [7]
trained with depth information greatly improved object detection performance. Apart from
improving detection performance, depth information provides spatial context that is highly
informative for efficient localization of objects. Our experiments show that given a fixed
number of regions that can be processed, our sequential exploration technique provides a
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better average precision than using a ranked sequence provided by the object proposal tech-
nique. Figure 1 shows a sequence of regions explored by a strategy trained to detect a table.
We compare the search sequence produced by our technique to the ranked sequence provided
by the region proposal technique. Our technique is able to utilize the room structure and the
presence of other objects in the image to explore the table region much earlier than the object
proposal ranking.

2 Related Work
Many techniques reduce the number of image windows to limit computation time for object
detection. For example, object proposal techniques [4, 16] rank regions in an image based
on their likelihood of containing an object. The ranking can be used to prioritize regions
for running an object classifier depending on the available computation budget. Such object
proposal techniques use only low level image information and do not exploit scene structure.

Some techniques iteratively run the classifier on a few windows and find the next set of
windows to be processed based on feedback from the classifier scores and/or spatial context.
Lampert et al. [11] prune the space of windows using a branch and bound algorithm. Butko
and Movellan [5] use a Partially Observable Markov Decision Process to sequentially place
a digital fovea (a center of fixation) to detect a single target in an image. Neither of these
techniques make use of spatial context between objects to improve window selection. Alexe
et al. [2] use only spatial context to choose a set of windows to be processed. The classifier
is run at the end of window set selection and the maximum scoring window is output as the
object location. Gonzalez-Garcia et al. [8] use both spatial context and the classifier scores
of previously explored regions. While their output during the testing stage is a sequence of
regions, the training is performed without taking into consideration the states (set of objects
explored until a step) encountered in a sequence. Hence, they can only model pairwise
constraints between an unexplored region and an object. Our technique models relationships
between an unexplored region and all the explored objects. Unlike existing work, we use
a framework that allows training and testing using the same procedure, thus reducing the
burden of tuning many modules in the system.

The idea of sequentially processing an image by exploiting structure is not just relevant to
object localization. Sequential processing has also been explored for video event detection,
where running a multitude of detectors at all spatio-temporal scales is very expensive. Amer
et al. [3] propose an explore-exploit strategy that schedules processes of top-down inference
using activity context and bottom-up inference using activity parts. They use a Q-learning
algorithm to learn the optimal actions to perform at a state. However, the learning algorithm
needs the specification of a reward function which is difficult to obtain in many domains. We
use an imitation learning algorithm that alleviates the problem of choosing a reward function.

3 Sequential Exploration
The most common formalism for sequential decision making is the Markov Decision Pro-
cess (MDP). An MDP is characterized by a set of states S, a set of actions A, transition
probabilities P and a reward function G (or equivalently a loss function). A policy π is a
function that maps states to actions π(s). The goal is to find a policy that will maximize
a cumulative function of the reward. When the transition probabilities are unknown, rein-
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forcement learning techniques are used to interact with the problem domain and sample the
probabilities.

Our problem is to locate objects of a query class (q) by exploring as few image regions
as possible. Let R be the set of indices of the regions in the image and t correspond to a step
index. Let Rt

e be the set of indices of the explored image regions and Rt
u = R\Rt

e be the set of
indices of the unexplored image regions at a step t. To state our problem in the reinforcement
learning setting, a state st is the set of all the image regions (r) explored until that step.

st = {ri|i ∈ Rt
e} (1)

An action corresponds to selecting the next image region to explore, at = r j where j∈Rt
u.

The reward function is difficult to specify for our image exploration problem. If we assume
that spatial arrangements of objects in images are generated from a hidden distribution sim-
ilar to games generated by a hidden emulator, a true reward function will allow the policy to
learn a predictor that can replicate the behavior of the hidden distribution. For example, if
we are searching for a chair, by setting the reward values higher for regions near a table than
those far away from it, the policy assigns a greater importance to table proximity feature.
Since images contain samples of spatial arrangements from the hidden distribution and the
true reward values are unknown, an imitation learning algorithm can be used to learn the
optimal policy. In imitation learning [1], rather than specifying a reward function, an oracle
demonstrates the action to take and the policy learns to imitate the oracle. For us, the ora-
cle selects the next region to explore based on the groundtruth labels. Hence, the policy is
trained to predict labels similar to the groundtruth.

Imitation learning algorithms usually learn a strategy by training a classifier on the
dataset of state features and actions (labels) obtained by sampling sequences produced by
an oracle policy. They make an i.i.d assumption about the states encountered during the exe-
cution of a learned policy which does not hold for our problem since the policy’s prediction
affects future states. During the test stage, if the policy encounters a state that was not gen-
erated by the oracle policy, it could predict an incorrect action that can lead to compounding
of errors. Ross et al. [14] propose an imitation learning algorithm called DAgger (Dataset
Aggregation) that does not make the i.i.d assumption about the states. DAgger finds a pol-
icy π̂ which minimizes the observed surrogate loss `(s,π) under its induced distribution of
states,

π̂ = argmin
π∈Π

Es∼dπ
[`(s,π)] (2)

where dπ = 1
T ∑

T
t=1 dt

π is the average distribution of states if we follow policy π for T steps.
Since dπ is dependent on the policy π , this is a non-i.i.d supervised learning problem.

In our work, `(s,π) is the Hamming loss of π with respect to π∗ - the oracle policy. At
a given state, the policy is penalized for what it predicts for all the regions in the unexplored
set. Let

ppp = (pi)i∈Rt
u

(3)

be a list of the predicted labels where each label pi ∈ {0,1} indicates whether the corre-
sponding region is predicted to contain an object of the queried class or not. The oracle
policy produces a list the same length as ppp with groundtruth labels. The Hamming loss is
measured between the list of predicted labels and groundtruth labels. When the policy labels
more than one region for exploration, we select the region with the highest belief as the next
region to explore.
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Algorithm 1 Sequential Exploration

1: function SEQ_EXPLORE(ob j_proposals,N)
2: explored_list←∅
3: curr_regions← ob j_proposals[0]
4: unexplored_regions← ob j_proposals[1 : end]
5: i← 0
6: while i < N and curr_regions 6=∅ do
7: i← i+1
8: rcurr ← POP(curr_regions)
9: PUSH(explored_list, rcurr)

10: for r j ∈ unexplored_regions do
11: score j = CLASSIFY(r j,explored_list)
12: end for
13: next← argmax j score j
14: PUSH(curr_regions,rnext )
15: REMOVE(unexplored_regions,rnext )
16: end while
17: return explored_list
18: end function

1: function CLASSIFY(r j,explored_list)
2: f eatures←∅
3: unary j ← UNARY_FEATURES(r j)
4: APPEND( f eatures,unary j)
5: NON_MAXIMAL_SUPRESS(explored_list)
6: pairs←∅
7: for rk ∈ explored_list do
8: label← QUERY_LABEL(r j)
9: if label 6= bgnd then

10: pairr j ,rk ← PAIR_FEATURES(r j,rk)
11: APPEND(pairs, pairr j ,rk )
12: end if
13: end for
14: agg_pair_ f eatures← AGG_STATS(pairs)
15: APPEND( f eatures,agg_pair_ f eatures)
16: (label,score)←DAGGER_PREDICT( f eatures)
17: if training then
18: DAGGER_SETLOSS(label,groundtruth)
19: end if
20: return score
21: end function

DAgger trains a single cost sensitive classifier for policy π̂ that considers features ex-
tracted from a state and predicts labels to determine the next action. During training, it starts
with an initial classifier and runs through the states, predicting labels for each state. Based
on its predictions, it is assigned a loss value at each state. At the end of an iteration, all the
features, the predicted labels and the loss values for all states are collected. The aggregate of
all the collected datasets until the current iteration is used to train a cost sensitive classifier,
which becomes the policy for the next iteration. DAgger is available through a simple inter-
face in the Vowpal Wabbit1 library. It contains a new programming abstraction proposed by
Daumé III et al. [6] where a developer writes a single predict function that encodes the al-
gorithm for the testing stage and the training is done by making repeated calls to this predict
function.

The function SEQ_EXPLORE shown in Algorithm 1 is substituted for the predict func-
tion in the programming abstraction of Daumé III et al. [6]. The input to the algorithm is
a list of object proposals and the number of regions that we are allowed to process. We
use a modified MCG [4, 9] for region proposal generation and RCNN-depth [9] for region
classification. The unary features used for classification are objectness score, proposal rank,
mean depth of the region, mean distance from the back of the room, minimum height from
the ground and maximum height from the ground. The pairwise features are 2D area over-
lap, 2D size ratio, distance between centroids, difference in mean distance from the back
of the room, difference in minimum heights from the ground and the difference in maxi-
mum heights from the ground. Most of these features were used by Silberman et al. [15] for
performing support inference. The aggregate feature set is constructed by performing min-
pooling for each class and each pairwise feature. For example, one of the aggregate features
would be constructed by collecting all the distances between centroids of the current region
and the regions of table class, and then taking the minimum of those distances. This feature
measures "how far is the closest table (and every other class) from the current region?"

1https://github.com/JohnLangford/vowpal_wabbit
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The computational complexity of our algorithm in the worst case scenario of exploring all
regions is O(n2) where we perform classification for every unexplored region at every step
after adding one region. However, we do not repeat the classification if a newly explored
region is marked as background since it does not change the context features at that step.
Hence the number of iterations where we classify the unexplored regions is dependent on
the number of foreground regions (k) in the image and the complexity is O(nk). Since there
are very few foreground regions in an image, k is usually small.

3.1 Data subset selection

Due to the presence of a large number of background regions, the training process can be-
come very slow. Hence we need to select a subset of the background regions such that
the training time becomes tractable while maintaining performance. A popular approach to
background set collection is hard negative mining, an iterative process where the training
data is progressively augmented with the false positive examples produced by the classifier
in an iteration. Hard negative mining is a computationally expensive technique which is ex-
acerbated in our case by the already expensive training process for a search strategy. Instead
we use a data subset selection technique motivated by the theory of Optimal Experiment
Design (OED) [13]. Given a linear regression model, the goal of OED is to select samples
such that the variance in the regression coefficients is minimized. A smaller variance in the
coefficients indicates that the prediction error on the test set is low and hence the linear re-
gression model trained with such a subset does not overfit the training data. Since DAgger
uses a linear classifier to predict actions, we employ an OED criterion to select a subset of
the background samples.

Let X be a matrix of n samples with p features. Let Π be a row selection matrix of size
k×n. Each row of Π contains a value of one in exactly one column and zeros otherwise. Let
Y be the vector of predicted labels. A linear regression model can be written as

Yk×1 = Πk×nXn×pβp×1 + εk×1 (4)

ε is the noise vector with mean zero and variance σ2Ik. In ordinary least squares regression,
the prediction error is directly proportional to the variance of the regression coefficients. The
variance is given by

var(β̂ ) = σ
2(XT

Π
T

ΠX)−1 (5)

Optimal Experiment Design suggests many criteria that optimize the eigenvalues of the in-
verse covariance matrix as a way to minimize the variance in the regression coefficients. The
A-optimal criterion minimizes the trace of the inverse covariance matrix and the D-optimal
criterion minimizes the determinant of the inverse covariance matrix. The D-optimal crite-
rion [10] is more popular due to the availability of off-the-shelf implementations and also, it
simplifies the determinant minimization of an inverse to maximizing the determinant of the
covariance matrix. Since we want to select only a subset of the negative samples, we fix the
selection variables for the positive samples. We use a row exchange algorithm2 that itera-
tively adds and removes rows based on the increments in the determinant. The features we
use in the data matrix for subset selection are only the mean centered unary features, since
the pairwise features are constructed dynamically and they are difficult to know beforehand.

2The row exchange algorithm is available as part of the Statistics Toolbox in MATLAB.
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4 Experiments and Results

4.1 Dataset

We demonstrate our approach on the NYU depth v2 dataset [15]. We use the RCNN-Depth
module of Gupta et al. [9] for the region classification. Their region proposal module is a
modified Multiscale Combinatorial Grouping (MCG) [4] technique that incorporates depth
features. Their feature extraction module is RCNN [7] which includes CNNs fine-tuned on
the depth images. The dataset is split into three partitions - 381 images for training, 414
images for validation and 654 images for testing. Since RCNN is trained on the training
split, the performance of the detectors on the training set images is extremely good and does
not reflect the behavior of the detectors on the test set. Hence we run the detectors on the
validation set, obtain groundtruth labels for the detections and this set forms the training set
for learning search strategies. The thresholds for the detectors are set based on the best F1
point on the validation set PR curves. We work with 18 categories and do not include the
box category as its performance values are very low with an average precision of 1.4%. The
operating characteristics of RCNN-depth can be found in the supplementary material. We
consider the top 100 regions obtained from the region proposal module. One of the reasons
we use only 100 regions is that as we increase the number of regions, the amount of variation
in the background regions increases, making the classification boundaries highly nonlinear
given our feature set. Since the number of available positive samples is not sufficiently large,
it is difficult to train a nonlinear classifier.

4.2 Sequential Exploration

Given a sequence of processed image regions, we measure the performance by the aver-
age precision (AP) of object detection performance versus the number of regions processed.
Specifically, we measure the average precision at intervals of 10 image regions until we reach
100 image regions. Since our goal is to search for an object of a query class, the sequence
of regions produced by our sequential exploration technique is different for different query
classes. Figure 2 shows average precision as the number of processed regions increases.
Each figure compares various sequences produced for a particular query class. The baseline
technique we compare with is the rank sequence obtained from the region proposal tech-
nique. The sequence is usually rank diversified and not necessarily sorted by objectness
scores. Since the region proposal technique is not aware of the query class, it produces only
one sequence for an image.

First, we train a classifier with the query class as the label and just the unary scene context
features (see Sec. 3). Since the scene context features do not change based on the regions
explored, we obtain scores from this classifier in a single step. The scores are then used to
rank the regions to obtain a sequence. Our results indicate that the scene context features
alone can achieve a significantly high average precision by using very few regions - for some
classes (Ex: bed, nightstand, sofa) almost 20-25% of the regions when compared with the
proposal ranking sequence. Next, we perform a sequential search using strategies trained
with object-object context features along with the scene context features. The results indi-
cate that for classes like counter, lamp, pillow and sofa, object-object context improves the
average precision over using just the scene context features. While we see improvement in
the dresser class as well, the number of test samples are too few to determine the significance
of the improvement. Figure 3 shows examples of search results for different query classes.
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Figure 2: Average Precision (AP) vs. number of processed regions. A classifier trained for
a query class with unary scene context features alone can achieve a significantly high average
precision by processing very few regions. Classes like bed, nightstand and sofa need only
20-25% of the regions when compared to the proposal ranking sequence. A search strategy
trained for a query class using both object-object context and scene-context features further
improves the performance for classes like counter, lamp, pillow and sofa. While the plots
show sequential processing of all 100 regions, the stopping criterion for practical situations
can be chosen based on the number of regions at which we obtain the maximum AP.

The examples show that our strategy which uses both scene context and object-object context
can locate objects of the query class earlier than the other methods.

The supplementary material contains plots that compares our technique trained with a
randomly selected background subset against our technique trained with the determinant
maximization based background subset. The plots show that our determinant maximization
based subset selection technique performs better or equally well with the random subset
on most of the classes. But the main advantage of our subset selection technique is the
repeatability of experiments unlike the one with random subset selection.

Computation time: On a single core of an Intel 4.0GHz processor, it takes only 20ms
on average for the search process in an image with 100 region proposals. The time taken
for extracting CNN features is 5ms per region on a GPU. Since our results show that for
most of the classes we can achieve a high average precision at around 25 to 50 regions
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Figure 3: Search results for different queries. We compare three strategies - ranked se-
quence obtained from the region proposal technique (unaware of query class), ranked se-
quence obtained from a classifier trained for a query class using scene context features alone
and sequence produced by a search strategy trained for a query class using both scene context
and object-object context features. Red boxes indicate regions labeled as query class, yellow
boxes indicate regions other than the query class and blue boxes indicate regions labeled as
background. The images show a state in the search sequence of different methods at a certain
number of regions processed. We can see that our strategy which uses both scene context and
object-object context can locate an object of the query class earlier than the other methods.

instead of evaluating all 100 regions, the total time taken for feature extraction and search
overhead is 0.145s and 0.27s for 25 and 50 regions respectively. This shows that the search
overhead is negligible compared to the total time and the reduction in number of regions
directly translates to 2 to 4 times speedup in computation time while still achieving a high
average precision. The time for context feature extraction is negligible because the necessary
information is already extracted by the region proposal module.

5 Conclusion
We have proposed a search technique for detecting objects of a particular class in an image
by processing as few image regions as possible. The search strategy is framed as a Markov
decision process learned using an imitation learning algorithm, which sequentially explores
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regions based on structure in the scene. Our experiments show that unary scene context
features of regions can alone achieve a significantly high average precision after processing
only 20-25% of the regions for classes like bed, night-stand and sofa. By incorporating
object-object context, the performance is further improved for classes like counter, lamp,
pillow and sofa. Our sequential search process adds a negligible overhead when compared
to the time spent on extracting CNN features, hence the reduction in number of regions leads
directly to a gain in computation speed of the object detection process.
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