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Abstract

This paper addresses the problem of removing highlight regions caused by the light
sources reflecting off glossy surfaces in indoor environments. We devise an efficient
method to detect and remove the highlights from the target scene by jointly estimating
separate homographies for the target scene and the highlights. Our method is based
on the observation that when given two images captured at different viewpoints, the
displacement of the target scene is different from that of the highlight regions. We show
the effectiveness of our method in removing the highlight reflections by comparing it
with the related state-of-the-art methods. Unlike the previous methods, our method has
the ability to handle saturated and relatively large highlights which completely obscure
the content underneath.

1 Introduction

Imagine being in an art museum or any other indoor environment where there are numer-
ous paintings, pictures, documents or posters held inside glass-frames for protection. There
are pieces which you wish to capture using a camera, but you experience difficulty avoid-
ing highlights which are generated by bright indoor lighting reflected off the glossy sur-
faces. Similar problems occur when trying to capture contents off of whiteboards, docu-
ments printed on glossy surfaces or objects such as books or CDs with plastic covers. Figure
1(a) illustrates typical examples.

In this paper, we address the problem of removing unwanted highlight regions in images
generated by reflections of light sources on glossy surfaces. Although there have been efforts
made to synthetically fill in the missing regions using the neighboring patterns by applying
methods like inpainting [3, 4], it is impossible to recover the actual missing information
in completely saturated regions. Therefore, it is prudent to consider using multiple images
where corresponding regions are not covered by the saturated highlights.

We make the following observations in devising our approach:

e The distance between the camera and the virtual location of the light source is typ-
ically larger than the distance between the camera and the target content. (Figure
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Figure 1: (a) Examples of highlights shown on the glossy surfaces obscuring the desired con-
tent and degrading visual quality (b) Result (right) obtained using our algorithm to remove
the highlights using two images (left and middle) captured at different viewpoints

2). Thus, it is reasonable to use two separate homographies in distinguising the
objects at difference distances. [7]

e When two images are captured with a change of view point, the displacement of
the desired content is different from the displacement of the highlight regions. This
is referred to as ‘motion parallax’.

Our method works with two images with slightly different viewpoints and applies a novel
algorithm called, Joint Homography Estimation for Highlight Removal (JH2R) which per-
forms a fast joint estimation of the two homographies, foreground and highlight, and pro-
vides a visually pleasing output with the highlights removed. (Figure 1(b))

To the best of our knowledge, no previous work has addressed an approach which can
successfully handle relatively large and saturated highlight regions obscuring the content
underneath. We show the effectiveness of our approach by comparing it with closely related
state-of-the-art methods.

2 Related Work

Several methods have been suggested to explicitly address highlight issues based on the
dichromatic reflection model [23]. Tan et al. [25] uses a user-assisted inpainting and show
that highlight pixels contain useful information for highlight removal. Similarly, [26] asserts
that the color texture data lying outside the highlights can assist in filling in the missing
diffuse surface colors inside the highlights. Yang et al. [28, 29] introduced a method which
propagates the diffuse color information into the highlight regions using an iterative bilateral
filter. Tan et al. [27] proposed a local operation based method which does not require explicit
color segmentation. They strongly assume that surface color is chromatic and ignores cases
with saturated regions.

Solutions based on reflection removal or layer separation can also be taken into consid-
eration. Some suggest that it is possible to solve this ill-posed problem using a single image
supported by additional priors. Levin et al. [12] showed that layer decomposition can be per-
formed by minimizing the total number of edges and corners. In [11], the prior information
for layer separation is strengthened by bringing the user into the loop for manual gradient
labeling. Li and Brown [14] recently suggested an approach which assumes that one layer
is smoother than the other. Since all of these methods use only one image as input, it is vir-
tually impossible to recover the content obscured by the highly-saturated or large highlights
unless the region is homogeneous and smooth.

Numerous approaches to exploit multiple images have also been explored. Some ap-
proaches have used the polarizing effect on specularities [5, 10, 20, 21] while others have
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used focus [22] or flash [1] as priors. However, using polarizers, different focuses or flash
may require use of additional hardware which is not always feasible or convenient for typical
users.

Techniques using multiple images with different viewpoints have also proven effective.
Szeliski et al. [24] showed that relative motion between the layers in multiple images can be
used effectively. In [13], gradients across the aligned image set are used to distinguish pixels
in different layers. Lin et al.[15, 16] integrated color analysis and multi-baseline stereo.
This, however, requires large set (>50) of images captured by moving the camera along a
linear path with constant velocity. The approach also suffers when images contain color
saturations. Recently, Guo et al.[8] showed that by harnessing correlation, sparsity, and the
independence prior, reflection separation can be performed.

These methods share a similar perspective with our approach in that they use multiple
viewpoints and incorporate the relative motion difference in different layers. However, our
method does not employ any sophisticated optimization which usually requires significant
processing time [8, 13], nor does it require any user intervention [8]. Most importantly, un-
like others, our method uses the relationship between the highlight regions resulting in more
robust removal of saturated highlights. A detailed comparison is presented in the experi-
ments section where our method is shown to outperform the representative state-of-the-arts.

3 Our Method

3.1 Overview

Light
source

Light
source
(virtual

location)

A

viewpoint 1
.

~
~
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Figure 2: The illustration depicts the overhead view of the camera, the desired content, and
the light source.

Our method was motivated by a widely acknowledged physical phenomenon known as
‘motion parallax’. Motion parallax states that as the viewer moves, the movement of the
objects in the vicinity is greater across the field of view than those in the distance. A driver
can easily observe that the objects close to the window (e.g., roadside traffic signs) pass by
quickly while those in distance (e.g., clouds) remain in one’s field of view longer.

Without loss of generality, we can similarly view the relationship between the desired
content (e.g., a painting) and the highlights as shown in Figure 2. Since the highlights caused
by the light source are the result of the reflection on the glossy surface before they reach the
camera, the light source can be modeled to virtually exist on the other side of the content.
Note that the distances of the two sources (target content and light) from the camera are
different. Unless the light source is attached on the same wall as the painting, in which case
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Figure 3: Schematic overview of our method (a) Input images (b) Joint homography estima-
tion (c) Feature-level labeling (d) Pixel-level labeling (e) Final results

no reflection would exist, the distances can never be the same. In fact, the distance from the
light source is always larger than the distance from the content (D > d, in Figure 2).

In order to distinguish the movements of the highlights, we need at least two images
captured in different views. We detect where the highlights are by searching for the two
separate homography matrices: one for the content (H¢) and the other for the highlights
(Hg). Applying two different homographies for scenes at different distances proved to be
effective by Gao et al. in [7]. We exploit the fact that the homography (H¢) which can
properly overlay the desired contents in the two images will generate an erroneous overlap
between the corresponding highlight regions. Similarly, the desired contents will display
incorrect overlap when Hy is employed. This is shown in the second step of Figure 3(b).

Unlike the intrinsic layer separation problem, removing the saturated highlights from
images requires another image which can provide the corresponding non-highlight pixels.
To perform such “pixel-transfer”, it is necessary to have the pixel-level detection results of
the highlights. In our approach, we first detect the highlight regions at the feature level by
jointly estimating the two homographies using the proposed JH2R algorithm. Then Hy is
used to estimate the highlight regions at the pixel-level. Finally, we remove the highlights in
both of the images by transferring the corresponding pixels from the complementary image
using Poisson blending [19]. Figure 3 shows the schematic overview of our method. Details
on each steps of the algorithm are explained in the following subsections.

3.2 Joint homography estimation and highlight feature labeling

In our approach, we attempt to estimate the two different homographies. We devise a novel,
yet efficient algorithm which only requires feature correspondences between the two images
along with Maximally Stable Extremal Region (MSER) [18] features for those images as
input. Although we have utilized the SIFT [17] features in our implementation, any type of
feature extractor and descriptor can be used as long as the features can be stably matched
throughout the image including the highlight regions. Before triggering our algorithm, a set
of all the feature correspondences (F') is acquired by thresholding the Euclidean distances
between tentative feature pairs as described in [17]. Our algorithm is shown in Algorithm 1.
Note that F' and M represent the set of all feature correspondences and the set of all MSER
features, respectively. The framework of our algorithm was inspired by the Random Sample
Consensus algorithm [6].

Our algorithm begins by estimating the homography for the content (H¢) using four
randomly selected feature correspondences from F. Using H¢, we temporarily label all
the feature correspondences in F as either the content feature F¢ or the outlier feature Fp by
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thresholding (T') their symmetric transfer errors [9]. The threshold T is emperically acquired.
For estimating the symmetric transfer error of a feature correspondence F;, we consider both
the forward (Hc¢) and backward (H, 1) transformations and use them to compute the sum of
geometric errors as follows:

e(F,He) = d(x;, H 'x})? +d(x},Hx;)?, (1)

where x; and x} are the corresponding feature points in F;, while d(p,q) represents the Eu-
clidean distance between the inhomogeneous points p and g.

At this point, we assume that the set of outlier correspondences, Fp, should include the
highlight feature correspondences since they do not follow the homography for the desired
content (H¢). Based on that, a second random sampling from set Fp is carried out to compute
the homography for the highlights (Hg). The results for the joint homography estimation is
depicted in Figure 3(b).

Once both of He and Hy are estimated, all the feature correspondences are relabeled
into three different mutually exclusive sets: F¢, Fy and Fp. Figure 3(c) depicts a sample
result of the feature-level labeling step. If a feature correspondence F; is not labeled as either
desired content or highlight, it is labeled as an outlier. In order for a correspondence F; to
be categorized into the desired content correspondence set (F¢), the symmetric transfer error
using H (i.e., e(F;,Hc) ) should be smaller than the threshold T'. At the same time, the error
using H¢ has to be smaller than the error using Hy, which indicates that F; favors H¢ over
Hp. If F; does not get categorized into F, the algorithm checks if it can be categorized as one
of the highlights by evaluating the symmetric transfer error using the highlight homography
(Hpy) in a similar manner.

One additional criterion is employed for F; to be categorized into Fy. It constrains the
features in F; to be present on the “bright-on-dark” MSERs [18]. The “bright-on-dark”
MSER regions indicate the MSER regions which are brighter than the vicinity. As the in-
tensity values in highlight regions tend to be stable and lighter than the neighboring regions,
MSER is a reasonable choice for obtaining potential highlight regions. Yet, MSER also de-
tects some other non-highlight regions as shown in Figure 3(d) which will be eliminated by
the pixel-level labeling and the blending scheme in Section 3.3.

Having obtained the labeling for all the feature correspondences along with the two ho-
mographies, the cost J for the current iteration is computed as

2

J = E(Fc,Hc) +E(Fy,Hy) _y<’1(FC)+’1(Ff1))

n(F)

The first and the second term incorporate the symmetric transfer error while the third
incorporates the number of inlier (desired content and highlights) feature correspondences.
Y is a parameter which balances the three terms. n(F¢) and n(Fy) indicates the number
of feature correspondences in each of the sets, respectively, while n;, represents the total
including the outliers. The first term which measures the average symmetric transfer error
for the set (F¢) is computed using Equation 3. The second term is computed in the same
manner.

e(F;,He)
E(Fe,He) = Yy &0 3
(Fc,Hc) Fl;c n(FC) 3)
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Algorithm 1: Joint homography estimation for highlight removal (JH2R)
Input : FFM
Olltpllt: Hc,HH7FC7FH
k+«1 /* iteration index =*/
repeat
Randomly select 4 correspondences € F, Compute He
for VF; € F do

if e¢(F;,Hc) > T then

‘ Fo < FpUF;

end
end
Randomly select 4 correspondences € Fp, Compute Hy
10 for VF; € F do

o X NN R W N =

1 if e(F;,He) <T & e(F;,Hc) < e(F;,Hy) then

12 | Fc < FcUF,

13 end

14 ife(F;,Hy) < T& e(F;,Hc) > e(F;,Hy) & F; € M then
15 | Fy <+ FyUF,;

16 end

17 end

18 Compute J., (Eqn. 2)

19 if J., <J then

20 J < Jeurr and update He, Hy , Fe, Fy
21 end

22 k—k+1

23 compute and update N (Eqn. 5)

24 until k <N

If the cost for the current iteration is smaller than the best previous case, the two ho-

mographies along with the two feature correspondence sets are updated. This process is
repeated until the termination criteria are met.
Termination criteria We determine a maximum iteration number N adaptively after every
iteration. We define w¢ as the probability that any correspondence randomly selected from
F is included in Fr. We assume that wy is the probability that any correspondence randomly
selected from F — Fg is included in Fy. These probabilities can be iteratively updated at the
end of each iteration as we = n(F¢)/n(F) and wyg = n(Fy)/(n(F) —n(F¢)). In Equation 4, p
is defined as the probability that 4 randomly selected samples are from Fg in the first selection
and 4 randomly selected correspondences are from Fy in the second selection within N
interations, at least once.

p=1—((1=we&) +we(1—wi))N = 1= (1 —wewi)V 4)

Here, (1 — w4c) is the probability that all 4 correspondences in the first selection are not
from Fe. w¢ (1 —w) indicates the probability that the 4 correspondences from the first
selection are from F¢ but at least one sample from the second selection are from the outlier
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set. Therefore, the adaptive maximum iteration number N can be derived from equation 4 as

__ log(1—p)
log(1—wiwd,)

®)

3.3 Pixel-level highlight detection and blending

Using the JH2R algorithm, the two homographies (Figure 3(b)) along with the two feature
correspondence sets (Figure 3(c)) for the desired content and the highlight regions can be
acquired. However, the feature-level detection of the highlight regions is insufficient to prop-
erly eliminate the highlights. Instead, it needs to be extended up to the pixel-level so that the
non-highlight pixels can be transferred complimentarily to recover the obscured contents.

We make use of two previously acquired results which make this step computationally
efficient: the estimated homographies (H¢, Hyy) and the MSER detection. Pink regions in
the left column of Figure 3(d) depict the MSER detection result. Then the homography Hy
is used to warp the two MSER images onto a common plane. This overlays the highlight
regions on one image onto the corresponding highlight regions on the other. Thus, the in-
tersection between the two MSER images, when projected onto the same plane using Hy,
should be the estimated region for the highlights in pixel-level sense. The right column of
Figure 3(d) shows the final highlight detection result. Note that we are assuming that the two
images both contain the highlights which we wish to eliminate.

Given the pixel-level highlight regions in both of the images, H¢ is used to project the
two images onto a common plane so that the desired contents are overlaid properly while the
highlight regions do not overlap. In other words, highlight regions in one image are overlaid
by the non-highlight regions in the other image. This enables us to easily recover missing
information for all the highlight regions in both of the images. Lastly, Poisson blending [19]
is applied to assist the pixel transfers at the highlight regions with smooth boundaries. Figure
3(e) shows the sample result with all the highlights eliminated with visually pleasing quality.

4 Experimental Results

Our method is implemented in Matlab and run on Intel Core i5 PC (2.6GHz CPU, 4GB
RAM). All the data used in the experiments are captured in real world scenes under different
indoor lighting conditions. Each input image set contains two images with two different
viewpoints.

Comparison with state-of-the-art We have compared our method with four state-of-the-art
algorithms [8, 13, 14, 29]. They are chosen to represent three different approaches to solve
the given problem : 1) highlight removal, 2) single image-based reflection removal, and 3)
multiple image-based reflection removal. We have used the implementations provided by the
authors using author-recommended parameters. Since [14] and [29] only use a single image,
we have used only one of the two images per set as input.

Figure 4 shows five sample results of real world images. As can be observed in Figure
4(c) and 4(d), both [14] and [29] are incapable of removing the highlights due to the lack
of information within the regions. Li et al. [14] fails to obtain sufficient amount of gradient
information which they use to separate the reflection layer. Yang et al. [29] also suffers since
the saturated highlights are void of diffuse color information which is supposed to change
smoothly from outside the highlights to the inside.
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(a) Input ! (b) Ours (c) L1 etal. (d) ng etal. (e) Lietal.
Figure 4: Five examples of highlight removal results using (b) our method compared with
those produced by (c) Li et al. [14], (d) Yang et al. [29], (e) Li et al. [13], (f) Guo et al. [8]

Multiple-image based approaches by [8, 13] produce results where the highlights are
only partially removed. In [13], gradients with variation across the aligned images are as-
sumed to belong to the reflected scenes while constant gradients are assumed to belong to the
desired scene. Thus, when the gradients on the highlights are too weak to be distinguished
from the underlying smooth texture, this approach may suffer as shown in Figure 4(e). While
[8] uses several priors including the independence between the desired content and the re-
flection to separate the two layers, none of the priors explain the inherent characteristics of
highlights. Thus, in most cases (Figure 4(f)), color components were falsely categorized into
the reflection layers, generating unnaturally colored results.

Our method, unlike others, specifically uses the relationship between the highlight re-
gions resulting in more precise detection and removal. One may observe from Figure 4 that
our method can also handle dim highlights as there still exist geometrical distinction be-
tween desired contents and dim highlights in terms of homography. In overall, our method
produces the most visually pleasing results.

Homography estimation evaluation In Figure 5, we show the efficacy of JH2R by compar-
ing the warped images using the estimated homographies with those using the groundtruth.
The estimated H for the desired content are very accurate. Although the estimated Hy may
not be equivalent to the groundtruth as illustrated in the third example, notice that the high-
light regions are still well aligned. As long as the highlights overlap properly, pixel-level
labeling can be performed. The groundtruth homographies are computed using manually
labeled correspondences for content and highlights, separately.

Processing time Our method spends 25.3 seconds on average which is much faster than Li
etal. [13] and Guo et al. [8] by almost the order of magnitude as shown in Table 1. Although
Li et al. [14] and Yang et al. [29] both spend less processing time compared to ours, their
performance in removing the highlights are unsatisfactory. We have used a single image (
[14, 29]) or a pair of images (ours, [8, 13]) according to each methodology. The size of the
images used in the experiments is 640 x 480.
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HH
(a) (b)
Figure 5: (a) Estimated homographies compared with the (b) groundtruth. These estimated

homographies are used to generate the results in the top three rows of Figure 4(b). Over-
lapped regions between the pairs are shaded in red.

Figure 6: More hlghhght removal results produced by our method. Red arrow indicates a
failure case.

In Figure 6, we show more results produced by our method including a failure case.
The red arrow indicates the region which is obscured by the highlights in both of the input
images which leaves no information to recover from. This violates our assumption that the
highlights in the input images should not cover the same content. However, this assumption
is known to be reasonable when targeting saturated regions as stated in [15, 16], and such
cases can easily be avoided with user cooperation.

5 Conclusion

In this paper, we have devised an efficient method for removing highlights reflected off
glossy surfaces of the target scene generated by bright sources. Our algorithm jointly esti-
mates the two representative homographies for the target scene and the highlights to effec-
tively detect and remove the highlights. Unlike some of the previous approaches that use
homography between non-highlight regions, we newly use correspondences between “high-
light” regions for better localization.

We have verified that our approach outperforms closely-related approaches, showing its
state-of-the-art quality in handling highly saturated highlights which obscure the underlying
content. It requires fewer constraints in image acquisition and is faster than any other multi-
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Method Num of Imgs  Processing Time
Ours 2 253s
Lietal. [14] 1 24.5s
Yang et al. [29] 1 <ls
Lietal. [13] 2 221.7s
Guo et al. [8] 2 260.2s

Table 1: Quantitative processing time comparison with previous methods

view methods [2]. It will be worthwhile to further investigate an automatic capture scheme
which can smartly overcome the challenging scenarios.
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