
NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES 1

Minimizing the Number of Keypoint
Matching Queries for Object Retrieval
Johannes Niedermayer
niedermayer@dbs.ifi.lmu.de

Peer Kröger
kroeger@dbs.ifi.lmu.de

Institute for Informatics
LMU Munich
Munich, Germany

Abstract

To increase the efficiency of interest-point based object retrieval, researchers have put
remarkable research efforts into improving the efficiency of kNN-based feature matching,
pursuing to match thousands of features against a database within fractions of a second.
However, due to the high-dimensional nature of image features that reduces the effectivity
of index structures (curse of dimensionality) and due to the vast amount of features stored
in image databases (images are often represented by up to several thousand features), this
ultimate goal demanded to trade kNN query runtimes for query precision. In this paper
we address an approach complementary to indexing in order to improve the efficiency of
retrieval by querying only the most promising keypoint descriptors, as this affects kNN
matching time linearly. As this reduction of kNN queries reduces the number of tentative
correspondences, a loss of query precision is minimized by an additional image-level
correspondence generation stage with a computational performance independent of the
underlying indexing structure. Our experimental evaluation suggests good performance
on a variety of datasets.

1 Introduction
While the development of the SIFT-Descriptor [24] made effective object retrieval on a large
scale feasible, its initial use of nearest neighbor queries lead to slow runtimes even on relatively
small data sets. These slow runtimes were first compensated by rough quantization using the
Bag of Visual Words (BoVW) technique [36]. In recent years, the focus turned back more and
more to approximate kNN queries [2, 8, 21, 26] due to their possible gain in matching accuracy
[18]: kNN queries provide an accurate ranking of the match candidates and a measure of
proximity between database features and query vectors. Recently, a remarkable leap in
performance has been achieved concerning efficient and effective kNN query processing in
computer vision. However, with the vast amount of features that have to be matched during
recognition (up to a few thousand), even very fast kNN indexing techniques that can provide
approximate query results in under ten milliseconds (e.g. [21]), would yield recognition
runtimes of several seconds.

We argue that the use of kNN queries for object recognition in large-scale systems cannot
be achieved by developing efficient indexing techniques alone. The problem of efficiency
has to be approached from additional research directions as well, such as the number of kNN
queries posed on the system. In this paper, we evaluate an alternative recognition pipeline that

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms. Pages 48.1-48.13

DOI: https://dx.doi.org/10.5244/C.29.48

Citation
Citation
{Lowe} 2004

Citation
Citation
{Sivic and Zisserman} 2003

Citation
Citation
{Babenko and Lempitsky} 2012

Citation
Citation
{Ge, He, Ke, and Sun} 2013

Citation
Citation
{Kalantidis and Avrithis} 2014

Citation
Citation
{Norouzi, Punjani, and Fleet} 2012

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

Citation
Citation
{Kalantidis and Avrithis} 2014

2 NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES

ranks query features by assessing their matchability. In order to reduce the number of kNN
queries, only the most promising features in this ranking are matched against the database.
However, despite gaining efficiency, the enforced reduction of kNN queries causes a reduction
of feature matches, decreasing the quality of the query result. While recall can be increased
by increasing k, to increase Mean Average Precision (MAP) we propose to expand matches
on the image level: Given a single seed feature match in a candidate image, this match is
expanded by comparing its spatially neighboring keypoints. This step pushes load from the
matching step (with complexity mostly determined by the underlying index structure) to an
additional step that only has to consider the features stored in a single image pair. Therefore,
this work stands in contrast to research in the area of BoVW-based retrieval: Research
involving the BoVW pipeline assumes that the matching step is relatively cheap, especially if
approximate cluster assignment techniques [25, 28] are used. In contrast, this paper aims at
maximizing MAP for a small number of processed features, assuming that feature matching is
expensive. This different optimization criterion is especially of interest as techniques that do
not lead to significant gains in performance at a high number of features (where convergence
to the maximum possible MAP has already been achieved by other techniques) can lead
to a remarkably higher MAP when only a low number of features is queried. Given this
argumentation, the contribution of this paper is to provide a simple and extensible pipeline for
large-scale object retrieval based on kNN queries with all of the following properties:
• Reduction of the number of keypoints queried by using a general keypoint ranking

scheme in order to reduce matching times.
• Acceleration of the pipeline by state-of-the art index structures such as (Locally Opti-

mized) Product quantization [17] or Multi-Index-Hashing [26].
• Geometric Match Expansion to relieve the index structure and to increase query MAP.
• The use of kNN queries (k >> 2) to increase the number of seed hypotheses and recall.
• Consideration of feature distances during scoring to allow accurate scoring of features.

We also provide an evaluation of this pipeline on a variety of datasets. We evaluate the effect
of k in relation to the number of keypoints queried on the systems performance, and the
pipeline’s behaviour on different feature descriptors including real-valued and binary features.

This paper is organized as follows. Section 2 formally defines the problem addressed in
this paper. We then review related work in Section 3. In Section 4 we describe our solution
to reducing the number of kNN queries during retrieval. Section 5 evaluates our solution on
different feature types and datasets. Section 6 concludes this work.

2 Problem Definition
Accurate kNN queries are, even after astonishing research efforts in the last years, still
computationally expensive. Therefore, in addition to indexing efficiency, other possibilities
must be considered to reduce the complexity of feature matching. Generally, to achieve this
complexity reduction, different approaches are reasonable, such as dimensionality reduction,
reducing the cost of distance functions (e.g. Hamming distance on binary features), or
decreasing the number of matching queries.

In this paper we focus on the latter approach: Let a database of images, represented by
sets of features describing the neighborhood around interest points, be given. Let n denote the
upper bound on the number of matching queries, constraining the number of kNN queries.
The goal of this research is to develop a retrieval algorithm that returns a list of images ranked
by their visual similarity to the query. We aim at modifying the image recognition pipeline
such that a given performance measure (in our case MAP) is maximized for a given n.

Citation
Citation
{Nist{é}r and Stew{é}nius} 2006

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2007

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

Citation
Citation
{Norouzi, Punjani, and Fleet} 2012

NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES 3

The problem setting is similar to BoVW-based approaches, however in such a context it is
usually assumed that n = nmax. In this paper we address the opposite case where n << nmax.

3 Related Work
Keypoint Reduction. In order to reduce the number of extracted features that have to be
matched, [11] aimed at predicting the matchability of features by interpreting the problem
as a classification task. Keypoint reduction can also be achieved by employing the Adaptive
Non-Maxima suppression (ANMS) from Brown et al. [3]. Their approach aims at finding
interest points that are sufficiently distributed across the whole image and is computationally
relatively inexpensive. Hajebi and Zhang [10] propose to keep track of the distribution of
scores during query processing and stop the investigation of further features as soon as the
score difference between the best-scored image and the average score becomes large enough.
Other approaches to rank features are based on visual attention [22]. The approaches from
Sattler et al. [32, 33], based on BoVW, consider features in ascending order of the length
of inverted lists of the corresponding visual words. While we aim at reducing the number
of query features with feature ranking, there exist also approaches aiming at reducing the
number of database features [23, 37, 40]. Decreasing both database and query features can be
a useful choice in the context of our pipeline, but is beyond the scope of this paper.

kNN Indexing. Due to the curse of dimensionality, exact kNN query processing in high-
dimensional space often suffers from slow runtimes. Therefore indexing research in the image
community concentrates on approximate nearest neighbor search. Recent research on kNN
indexing aims at providing low runtime and storage complexity while providing accurate
distance approximations at the same time. One group of these techniques is based on the
Product Quantization approach from Jégou et al. [17]. Recent extensions of this approach
include [2, 8, 21]. Another group of techniques aiming at efficient query processing is built on
the idea of generating distance-preserving binary codes from real-valued features, sometimes
referred to as binarization [12, 13, 19, 38, 42]. In contrast to binarization techniques, binary
keypoint descriptors such as BinBoost and ORB [31, 39] can avoid the indirection of extracting
real-valued (e.g. SIFT) features first and then binarizing them. Nearest Neighbor queries on
databases of binary features can be sped up using LSH [14] or Multi-Index Hashing [26].

kNN-based Matching. kNN-based matching has a long history in image retrieval and has
been used e.g. by Lowe [24] (k = 2). Jégou et al. [18] evaluated kNN matching based on local
features, especially SIFT, however without addressing keypoint reduction. They proposed a
voting scheme optimized for kNN-based retrieval. Their adaptive criterion scores matches
relative to the distance of the kth match. The authors also analyzed normalization methods
for the resulting scores. Qin et al. [30] proposed a normalization scheme for SIFT-features
that locally reweighs their Euclidean distance, optimizing the separability of matching and
non-matching features.

Match Expansion. As our technique aims at reducing the number of kNN queries during
the matching step, the generation of a sufficient number of match hypotheses has to be
achieved in a different fashion. We do so by applying a flood-filling approach using kNN
matches as seed points. Match expansion has received quite some attention in the computer
vision community [6, 7, 9, 20, 34, 35, 36, 37]. One of the first techniques in this area of
research has been proposed by Schmid and Mohr [35] which does however not consider
feature reduction. Sivic and Zisserman adapted their technique for Video Google [36]. We
however do not reject matches based on this technique but rather increase the score of a
given image by considering neighboring features. Our work is also inspired by [34], where

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{Brown, Szeliski, and Winder} 2005

Citation
Citation
{Hajebi and Zhang} 2013

Citation
Citation
{Lee, Kim, Kim, Kim, and Yoo} 2010

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2011

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2012

Citation
Citation
{Li, Snavely, and Huttenlocher} 2010

Citation
Citation
{Tolias, Kalantidis, Avrithis, and Kollias} 2014

Citation
Citation
{Turcot and Lowe} 2009

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

Citation
Citation
{Babenko and Lempitsky} 2012

Citation
Citation
{Ge, He, Ke, and Sun} 2013

Citation
Citation
{Kalantidis and Avrithis} 2014

Citation
Citation
{He, Wen, and Sun} 2013

Citation
Citation
{Heo, Lee, He, Chang, and Yoon} 2012

Citation
Citation
{Joly and Buisson} 2011

Citation
Citation
{Torralba, Fergus, and Weiss} 2008

Citation
Citation
{Zhou, Lu, Li, and Tian} 2012

Citation
Citation
{Rublee, Rabaud, Konolige, and Bradski} 2011

Citation
Citation
{Trzcinski, Christoudias, Fua, and Lepetit} 2013

Citation
Citation
{Indyk and Motwani} 1998

Citation
Citation
{Norouzi, Punjani, and Fleet} 2012

Citation
Citation
{Lowe} 2004

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

Citation
Citation
{Qin, Wengert, and Gool} 2013

Citation
Citation
{Cui and Ngan} 2013

Citation
Citation
{Ferrari, Tuytelaars, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2004

Citation
Citation
{Guo and Cao} 2012

Citation
Citation
{Jung and Lacroix} 2001

Citation
Citation
{Schaffalitzky and Zisserman} 2002

Citation
Citation
{Schmid and Mohr} 1996

Citation
Citation
{Sivic and Zisserman} 2003

Citation
Citation
{Tolias, Kalantidis, Avrithis, and Kollias} 2014

Citation
Citation
{Schmid and Mohr} 1996

Citation
Citation
{Sivic and Zisserman} 2003

Citation
Citation
{Schaffalitzky and Zisserman} 2002

4 NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES

Feature
Extraction

Feature
Ranking

Feature
Matching

Match
Expansion

Scoring

Index
LOPQ/MIH Keypoints

Figure 1: Recognition pipeline. The last three steps, i.e. matching, expansion, and scoring are
performed tightly interleaved for each query feature.
the authors used a region-growing approach for establishing correspondences in the context
of multi-view matching in order to increase result quality, but not to reduce the number of
queried features. The approach from Ferrari et al. [7] builds a dense grid of features over
the image while we use the initially provided keypoints and descriptors that are stored in
the database nonetheless, reducing computational overhead. Geometric min-Hashing [5]
aims at increasing precision at the cost of recall, by dropping features that do not share a
similar neighborhood. However, if we reduce the number of matching queries, one of the
main concerns is recall, such that our approach aims at increasing MAP without negatively
affecting recall. The authors of [33] combined keypoint reduction and concepts similar to
our match expansion, however in the context of 2D-to-3D matching and pose estimation,
employing Lowe’s SIFT ratio test without kNN-based scoring.

4 Pipeline
The general retrieval pipeline from this paper follows the one used in the past for BoVW-
based image retrieval, but in order to incorporate kNN queries and to reduce the number of
query features we had to apply some changes, see Figure 1. The pipeline was designed with
extensibility in mind such that each stage, e.g. keypoint reduction and match expansion, can
be easily exchanged by different techniques. Furthermore, it can be extended with geometric
verification or query expansion techniques [4].

1) Feature Extraction. During feature extraction, given the query image, we extract the
set of keypoints and descriptors. Possible features include floating point features such as SIFT
[24] or binary features such as BinBoost and ORB [31, 39]. The number of features depends
on the feature extractor and can range up to several thousand features.

2) Feature Ranking. Feature ranking is based on the idea that some features in an image
contain more information than other (such as vegetation) features. We aim at ordering the
extracted features by a given quality measure and query only the features with the highest
chance of providing good match hypotheses. There exist several techniques for feature
ranking, the only criterion such a technique needs to fulfill in order to be integrated into the
recognition pipeline is that it returns a quality score for each query feature. Besides simple
baselines such as random ranking or ranking by response or size, sophisticated techniques
include Adaptive Non-Maximal Suppression [3] and the use of decision trees [11]. The result
of this feature ranking step is a list of features ordered by their expected matching quality.

3) Feature Matching. Feature matching aims at finding match hypotheses for the highest
ranked features. For each of the first n features in the ranking, a kNN query is posed on the
database. The selection of the parameter k of the kNN query is important for maximizing
the quality of the query result [18], as a large k introduces a high number of erroneous
correspondences. A small k however reduces the retrieval quality, as many high-quality

Citation
Citation
{Ferrari, Tuytelaars, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2004

Citation
Citation
{Chum, Perdoch, and Matas} 2009

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2012

Citation
Citation
{Chum, Philbin, Sivic, Isard, and Zisserman} 2007

Citation
Citation
{Lowe} 2004

Citation
Citation
{Rublee, Rabaud, Konolige, and Bradski} 2011

Citation
Citation
{Trzcinski, Christoudias, Fua, and Lepetit} 2013

Citation
Citation
{Brown, Szeliski, and Winder} 2005

Citation
Citation
{Hartmann, Havlena, and Schindler} 2014

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES 5

hypotheses are left unconsidered. Basically, k can be seen as a way to tweak recall at a given
number of query features, as the number of images returned by the query is at most n ∗ k.
Therefore, if a very small number of kNN queries is used for correspondence generation, it
is possible that a very large k increases effectiveness, as it allows for finding more initial
correspondences. We refer to Section 5 for an experimental analysis of this problem. The
feature matching stage provides a list of tentative feature matches (pi

q, p j
x). To increase

the efficiency of feature matching, we rely on fast state-of-the-art (approximate) indexing
techniques optimized for high-dimensional data, focusing on Locally Optimized Product
Quantization [21] for real-valued features and Multi-Index Hashing [26] for binary features.

4) Match expansion. The match expansion phase is tightly interleaved with the feature
matching phase. In our scenario where we want to pose a very small number of kNN queries
on the system, we face the problem that even if we find some correspondences between the
query and a database image, their number will be relatively low, increasing the probability
that a good match is outranked by an image containing common random matches only.
Therefore, we shift the load of correspondence generation from the matching stage –that
employs kNN queries– to an intermediate stage that avoids such queries. Match expansion
aims at reducing the runtimes of generating additional matches, which usually depend on the
underlying index structure, to runtimes depending on the features stored in a single image pair.
When employing exhaustive search with product quantization for indexing, match expansion
therefore avoids additional linear scans over the feature database; as non-exhaustive variants
of product quantization only consider a fraction of features in the database, the gain of match
expansion in this case depends on the desired recall of the index structure.

Note that, while such a match expansion can find additional hypotheses for candidate
images, i.e. increase MAP, it cannot retrieve any new candidates, i.e. increase recall which
has to be ensured during feature matching. This stage therefore aims at compensating for
the loss in MAP due to querying less features. Expansion exploits the keypoint information
of the seed matches that provide scale, rotation, and possibly affine information. These
properties can be used to identify spatially close keypoints [5, 7, 34, 35, 41]. Given that a
match hypothesis is correct, not only the corresponding feature pair should match, but also
its spatial neighborhood. The similarity of a match’s neighborhood is evaluated using the
procedure shown in Figure 2. The figure shows an initial seed match, i.e. a kNN of a query
feature and keypoints surrounding the seed match. The size of each keypoint is represented
by the icon diameter, and the gradient direction is represented by a line anchored in the
icon’s center. The top row of this figure visualizes the features of the query image Iq, while
the bottom row visualizes the image features of a tentative match image Idb. Starting point
is an initial correspondence pair (pi

q, p j
db) established by kNN-search in feature space, see

Figure 2 a). In a first step, features in a given spatial range are retrieved in the image Iq for pi
q

and in Image Idb for p j
db, see Figure 2 b); the spatial range is visualized by a dotted circle.

Given the constant δxy, the spatial range is given by si
qδxy for the query feature and s j

dbδxy

for the matching database feature (with sy
x the size of keypoint y in image x), achieving scale

invariance. Spatially close keypoints with a significantly different scale (determined by the
scale ratio threshold δs) than their reference feature are discarded (see the small features in the
figure) similar to [5], resulting in two sets of features Pq and Pdb. These remaining features
are rotation-normalized using the reference keypoint’s gradient orientation information ri

q and
ri

db, rotating the set of keypoints and their corresponding gradient orientations, see Figure 2 c).
Then the two lists of keypoints are traversed in parallel. If the rotation-normalized angle α to
the reference feature (i.e. the angular position of the feature to the reference), the rotation-

Citation
Citation
{Kalantidis and Avrithis} 2014

Citation
Citation
{Norouzi, Punjani, and Fleet} 2012

Citation
Citation
{Chum, Perdoch, and Matas} 2009

Citation
Citation
{Ferrari, Tuytelaars, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2004

Citation
Citation
{Schaffalitzky and Zisserman} 2002

Citation
Citation
{Schmid and Mohr} 1996

Citation
Citation
{Wu, Ke, Isard, and Sun} 2009

Citation
Citation
{Chum, Perdoch, and Matas} 2009

6 NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES

normalized gradient angle r, and the feature-space distance of two features dv are within a
predefined threshold (δα , δr, and δdv respectively) and the ratio of their scale-normalized
spatial distance is within given bounds δdxy , the corresponding features are accepted as a
matching pair (see Figure 2 d)). The remaining features are discarded. Note that, while the
complexity of this step is |Pq| ∗ |Pdb| in the worst case, it can be reduced by an efficient sweep-
line implementation that sorts features by their angle α and traverses both lists in parallel.
The matching procedure can be called recursively on the expanded features to compensate for
non-rigid transforms (in our case with a maximum recursion depth of 2); however, as we will
see in the experimental evaluation, the gain of this recursive expansion is relatively low. By
choosing the Mahalanobis distance using the affinity matrices of the seed pair (Ai

q and Ai
db

of affine keypoint detectors) instead of Euclidean distances for finding spatially neighboring
keypoints, the process can be extended to affine-invariant features. Result of the expansion
phase is an extended list of match hypotheses.

a) b) c) d)

Figure 2: Generation of additional match hypotheses.

Note that the match expansion
phase trades a higher memory con-
sumption for effectiveness: In con-
trast to approaches not relying on
geometric information, keypoint
information such as the keypoints’
position and rotation has to be
stored in the database. In contrast
to other approaches only relying on
geometric verification there is also
some additional cost for storing the
feature vectors in the database. To mitigate the problem of storing feature vectors, we will
consider effective compression techniques after the description of the pipeline.

5) Scoring. Scoring is again tightly interleaved with match generation. Based on the
expanded list of matches, a score is computed for every database image. We adapt the
technique from [18], weighting scores based on their distance to the query feature and the
number of features in the image. For each matched feature from image Ix its score is increased
by (

√
dkNN−dre f)/(

√
|Iq|

√
|Ix|) with dkNN the kNN distance of the seed feature, and dre f the

distance between the seed feature and its tentative match in the candidate image, i.e. features
generated during match expansion are assigned the same score as their seed match. This score
is similar to the scores from [18], however we have added additional square root weighting
which further increased effectiveness of these scores. For scoring we implemented a simple
burst removal [16] scheme after match expansion that allows only for one correspondence per
feature in the query image.

Database. In the most basic case, the image database used for query processing can be
seen as a list of tuples (p0

0, . . . , p|I0|0 , . . . , p0
i , . . . , p|Ii|i , . . .) where p j

i denotes a tuple containing
feature i from image j and its keypoint information. Features in the list are ordered by their
corresponding image to allow efficient match expansion. The memory footprint of the image
database can be reduced by compressing the feature vectors used during match expansion: For
compressing real-valued feature vectors, we consider Product Quantization as in the matching
step (see [17] and Step 3)). Therefore, Product Quantization is used two times in the pipelines
in different ways, once for matching and once for match expansion: In contrast to the Locally
Optimized Product Quantization based indexing we are using, we do not product quantize
residual vectors during the expansion step, but rather the vectors themselves, as otherwise

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

Citation
Citation
{J{é}gou, Douze, and Schmid} 2009

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES 7

Extractor Train δxy δs δdv δα δr δdxy

SIFT P6k 6 0.8 26.2 24.3 – 0.49
SIFT O5k 6 0.8 26.9 18.9 – 0.56

BinBoost P6k 4 0.8 73 21.1 26.0 0.46

Table 1: Parameters for Match Expansion

vectors belonging to different cells in the outer quantizer could not be compared efficiently.
For compression, we split each feature vector in a set of m = 8 subquantizers and for each
of these subquantizers build a codebook of s = 256 centroids. The distance between feature
vectors can then easily be approximated as the sum of squared distances between the closest
subquantizer centroids followed by a square root operation. As distances between cluster
centroids can be stored in a lookup table of size m∗ s∗ s, distance computations reduce to
m table lookups and a single square root operation. Memory consumption could be further
minimized by quantizing keypoint information similar to [27].

5 Experiments

5.1 Experimental Setup
We evaluated the modified recognition pipeline on four datasets, Oxford5k (O5k) [28], Ox-
ford105k (O105k) [28], Paris6k (P6k) [29], and INRIA Holidays (Hol) [15]. Images of
the Holidays dataset were scaled down to a maximum side length of 1024 before feature
extraction. We used two different feature extraction techniques: a rotation-variant version of
SIFT using affine invariant keypoints1 from the authors of [27] and, as an instance of state-
of-the-art binary descriptors, the BinBoost descriptor which is also publicly available [39].
Concerning Hessian-affine SIFT, scale was separated from the affinity matrices according
to [27], however for expanding matches we used the square root of this scale which roughly
corresponds to the radius of the image patch used for SIFT extraction. These vectors were
square-root weighted similar to RootSift [1], however without applying L1 normalization
before taking the element-wise square root. The weighted features were then indexed using
LOPQ in combination with a multi-index [21]. We use a vocabulary of size V = 2 ∗ 1024
for the inverted lists, and 8 subquantizers for vector quantization, each subquantizer with a
vocabulary size of 256 clusters. To compress the feature vectors for the expansion phase, we
again used 8 subquantizers consisting of 256 clusters, reducing storage overhead of feature
vectors to 6.25% of their uncompressed memory footprint. Codebooks for the Oxford and Hol-
idays dataset were trained on Paris6k, and for Paris6k codebooks where trained on Oxford5k.
During query processing, we applied burst removal [16]. To index BinBoost descriptors
we used Multi-Index Hashing [26]. The code was written in C++ using OpenCV. Runtime
experiments were conducted on an off-the-shelf Linux Machine with i7-3770@3.40GHz CPU
and 32GB of main memory without parallelization.

Parameters. Match expansion parameters were set as follows. First, range multiplier
δxy, maximum scale change δs, k, and n were set by hand with computational efficiency in
mind, as a lower number of features considered during expansion reduces the cost of this step.
Given these manually set parameters, the remaining parameters of the expansion phase, i.e.
feature distance threshold δdv , angular threshold δα , gradient angle threshold δr and spatial
distance ratio δdxy were set to the outcome of a Nelder-Mead Downhill-Simplex optimization
maximizing MAP; initialization was performed with reasonable seed values. Optimization

1https://github.com/perdoch/hesaff/

Citation
Citation
{Perd'och, Chum, and Matas} 2009

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2007

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2007

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2008

Citation
Citation
{Jégou, Douze, and Schmid} 2008

Citation
Citation
{Perd'och, Chum, and Matas} 2009

Citation
Citation
{Trzcinski, Christoudias, Fua, and Lepetit} 2013

Citation
Citation
{Perd'och, Chum, and Matas} 2009

Citation
Citation
{Arandjelovic and Zisserman} 2012

Citation
Citation
{Kalantidis and Avrithis} 2014

Citation
Citation
{J{é}gou, Douze, and Schmid} 2009

Citation
Citation
{Norouzi, Punjani, and Fleet} 2012

8 NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES

(a) SIFT, Oxford5k, k=100
↓ Appr. → n 50 100 500 1000

RND .616 .698 .810 .827
RESP .557 .640 .787 .822
ANMS .676 .727 .825 .836

RND+ME .679 .749 .829 .838
ANMS+ME .741 .780 .843 .844
RND+MER .686 .752 .826 .832

ANMS+MER .752 .786 .837 .838

(b) BinBoost, Oxford5k, k=100
↓ Appr. → n 50 100 500 1000

RND .390 .462 .586 .616
RESP .389 .461 .600 .625
ANMS .461 .508 .614 .620

RND+ME .469 .529 .625 .638
ANMS+ME .542 .588 .648 .644
RND+MER .481 .539 .626 .634

ANMS+MER .551 .591 .648 .640

Table 2: Oxford5k: SIFT and BinBoost
(a) SIFT, Holidays, k=10

↓ Appr. → n 50 100 500 1000
RND .600 .662 .765 .792
RESP .571 .630 .735 .770
ANMS .642 .696 .779 .803

RND+ME .646 .702 .764 .770
ANMS+ME .699 .734 .780 .781

(b) SIFT, Paris6k, k=100
↓ Appr. → n 50 100 500 1000

RND .566 .652 .770 .786
RESP .519 .594 .743 .775
ANMS .578 .668 .783 .794

RND+ME .629 .699 .781 .789
ANMS+ME .648 .723 .793 .796

Table 3: Holidays and Paris6k on SIFT

was done on the Paris6k dataset (with LOPQ and quantization codebooks trained on Paris6k
as well) for the Oxford5k, Oxford105k and Holidays datasets. For Paris6k, we optimized on
Oxford5k. Parameters were selected for each of the descriptor types (SIFT and BinBoost)
using ANMS ranking at k = 100, n = 10, recursively descending into every expanded match.
The resulting parameters were reused for the remaining ranking approaches, different k, n and
the non-recursive approach. An overview over the selected parameters is shown in Table 1.

We varied each of the optimized parameters by ±10% separately on Oxford 5k (ANMS
ranking with match expansion) to get insights into their effect on MAP. The maximum
deviation resulted from decreasing the feature distance threshold, which lead to a decrease in
MAP of −0.012, indicating that while there is an impact of the optimized parameters on the
performance of match expansion, there is still a range of relatively “good” parameters.

5.2 Experiments
We evaluated the algorithm’s performance by varying k and n as these parameters affect the
number of initial seed points that are expanded later. Our baselines without match expansion
use the Ca+SRN scoring from [18]. Recall that n upper bounds, for a query image, the number
of kNN queries.

Keypoint Ranking. Our first experiment (see Table 2a and Table 2b) evaluates the
performance difference in MAP of different keypoints ranking techniques when querying a
low number of features (i.e. 50, 100, 500, 1000 keypoints) to select the best one for match
expansion. We evaluated a random baseline (RND), ranking by keypoint responses (RESP),
and Adaptive Non-Maximal Suppression [3] (ANMS). The MAP of the response-based
ranking is worse or similar to the random baseline. In contrast ANMS increases MAP for all
approaches. Note that the gain resulting from using ANMS is rather astonishing for Oxford5k
(Table 2a) and Holidays (Table 3a). For Paris6k (Table 3b), the gain is lower. For BinBoost
(Table 2b), ANMS can increase performance on Oxford5k as well. The average number of
retrieved images for ANMS at 50 keypoints is approximately 2450 and increases to about
4800 images at 1000 keypoints.

Citation
Citation
{J{é}gou, Douze, and Schmid} 2011{}

Citation
Citation
{Brown, Szeliski, and Winder} 2005

NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES 9

(a) SIFT, Oxford 105k, k=100

↓ Appr. → n 50 100 500 1000
ANMS .489 .554 .710 .748

ANMS+ME .584 .630 .753 .775

(b) BinBoost, Oxford 105k, k=100

↓ Appr. → n 50 100 500 1000
ANMS .369 .412 .527 .558

ANMS+ME .445 .477 .576 .590

Table 4: Oxford105k: SIFT and BinBoost

Match expansion. Our second experiment aims at evaluating the gain in MAP that can
be achieved for a low number of kNN queries when additional hypotheses are generated
by match expansion (ME) and the same approach in its recursive version (MER). Affine-
invariant SIFT features (ANMS+ME, n=50) achieve about 90% of the random baseline
(RND,n=1000) on Oxford5k, where the baseline (RND, n=50) only achieves 75%. At
the same time the results at 1000 keypoints are similar for all approaches, showing that
match expansion does not considerably affect MAP if a high number of keypoints is queried.
This substantiates our statement made in the introduction: if a small number of features is
queried, techniques that do not achieve high performance gain for a high number of features
can achieve considerable gain in performance. Results are similar for Holidays (88% for
ANMS+ME@n = 50 vs. 76% for the random baseline) while for Paris6k the gain of match
expansion is lower (82% vs 72% for the random baseline). Further note that MAP for
ANMS+ME decreases slower with decreasing n than without expansion (-.003 (ANMS+ME)
vs. -.011 (ANMS) for n : 1000→ 500 on Paris6k). Additional results for Oxford105k are
shown in Table 4a. For BinBoost (Table 2b and Table 4b), match expansion improves results as
well. While there is some gain for recursively descending (MER) into matches, this additional
step does not significantly improve the performance with both SIFT and BinBoost, while
being computationally much more expensive. ANMS+ME on Oxford using SIFT accepted
about 16500 matches per query image (n = 100, k = 100), in contrast to the approximately
8800 tentative correspondences (less than n∗k due to burst removal) that have been generated
using kNN matching alone (ANMS).

0

0.2

0.4

0.6

0.8

10 100 1000

M
A

P

k

ANMS n=10
ANMS+ME n=10

ANMS n=1000
ANMS+ME n=1000

Figure 3: MAP for varying k (SIFT, O5k)

Value of k. As explained in the main section
of this paper, not only the number of queried key-
points can be used to increase the number of seed
hypotheses and therefore the matching quality,
but also k. What happens to the optimal value of
k when we decrease the number of keypoints? As
shown in Figure 3, if a large number of keypoints
is queried (n = 1000), then for all of the evalu-
ated approaches a value of k = 100 performed
better than k = 1000. So in general, match ex-
pansion does not affect the optimal value of k in
this case. However, if only very few keypoints are used for query processing (e.g. n = 10), a
large k performed better with match expansion. Without the additional ME step, performance
decreased for large k (however at a larger k than at a higher number of keypoints queried),
as the additional false correspondences could not be out-weighted by the higher number
of correct matches. This leads us to the following results: The best way to increase query
performance, which is well known, is to increase the number of keypoints queried. In order to
increase query efficiency however, it is possible to decrease the number of keypoints queried.
In this case, some of the performance loss resulting from a lower number of keypoints can be

10 NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES

compensated by a large k in combination with match expansion (and, at a lower degree, even
without ME).

Runtime. The cost of the evaluated keypoint ranking approaches is negligible for the
random and response based ones, as these just have to sort the query features, and about
7ms (SIFT) and 5ms (BinBoost) for the ANMS ranker (Oxford5k). For SIFT, scoring
times (including ME) were about 6ms for processing all k results of a single kNN query
(k = 100, n = 100), and therefore slightly lower than the runtimes of running a single kNN
query which took about 7ms, at the possible gain of adding additional matches. The feature
quantization needed for match expansion took about 45ms for all features in a query image.
For BinBoost features (including ME), the match expansion and scoring took less than 4ms for
processing a single kNN result. The overall runtime for Hessian-Affine SIFT at 100 keypoints
(ANMS+ME) was about 1.34s (k = 100,n= 100), while for binary features it was significantly
higher (15s), as for this we used an exact, though state-of-the-art, indexing technique. Setting
runtimes in relation to MAP, it is possible to beat an RND ranker considering 100 keypoints
with ANMS+ME considering 50 keypoints at a slightly lower runtime 0.69s vs 0.75s and
a higher MAP (see Table 2a, .698 vs. .741, O5k). For the holidays dataset runtimes of the
random approach (RND) were about 0.9s (k = 10, n = 100) and for ANMS+ME it was only
approximately 0.6s (k = 10, n = 50) at a higher MAP. The most time-consuming operation
during match expansion is the search of spatially close features; we think that the runtimes
of match expansion can be reduced significantly by optimizing this matching step. For
Oxford105k the runtime for match expansion was similar to Oxford5k: A single kNN query
took slightly less than 8ms and expansion took about 7ms. Runtimes have been measured
using only a single core, however algorithms can be easily parallelized.

Comparison to the State of the Art. While the primary goal of this research is not to
increase the effectiveness of object recognition but rather to reduce the number of features
queried, let us still compare our results to the state of the art in order to get insights into
its performance. We compare to [30], as the authors were using the same SIFT features
and a recognition pipeline involving Product Quantization. On Oxford5k [30] achieved
MAP of 0.78 using Product Quantization with 8 subquantizers, i.e. a setting close to our
scenario. This corresponds to the performance we could achieve when querying 100 keypoints.
However, using the pipeline from our paper requires a larger memory footprint; if we consider
techniques with a memory footprint closer to ours, [30] was able to achieve 0.83 points
in map by approximating features more accurately using 32 bytes per feature, lower than
ANMS+ME@n=500.

6 Conclusion
In this paper we evaluated an alternative pipeline for decreasing the runtimes of object
recognition when kNN queries are used for the generation of tentative correspondences
instead of Bags of Visual Words. While the reduction of query features can have negative
effects on query performance, especially if the unmodified standard recognition pipeline is
used, some simple modifications in the pipeline aiming at feature ranking and match expansion
can already produce good results at only a fraction of kNN queries. Further improvements
in the match expansion stage should aim at increasing its efficiency and effectiveness. Due
to the simple structure of the pipeline used in this paper, such improvements can be easily
integrated.

Citation
Citation
{Qin, Wengert, and Gool} 2013

Citation
Citation
{Qin, Wengert, and Gool} 2013

Citation
Citation
{Qin, Wengert, and Gool} 2013

NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES 11

References
[1] Relja Arandjelovic and Andrew Zisserman. Three things everyone should know to

improve object retrieval. In Proc. CVPR, pages 2911–2918. IEEE, 2012.

[2] Artem Babenko and Victor Lempitsky. The inverted multi-index. In Proc. CVPR, pages
3069–3076, 2012.

[3] Matthew Brown, Richard Szeliski, and Simon Winder. Multi-image matching using
multi-scale oriented patches. In Proc. CVPR, volume 1, pages 510–517. IEEE, 2005.

[4] Ondrej Chum, James Philbin, Josef Sivic, Michael Isard, and Andrew Zisserman. Total
recall: Automatic query expansion with a generative feature model for object retrieval.
In Proc. ICCV, pages 1–8. IEEE, 2007.

[5] Ondrej Chum, Michal Perdoch, and Jiri Matas. Geometric min-hashing: Finding a
(thick) needle in a haystack. In Proc. CVPR, pages 17–24. IEEE, 2009.

[6] Chunhui Cui and King Ngi Ngan. Global propagation of affine invariant features for
robust matching. TIP, 22(7):2876–2888, 2013.

[7] Vittorio Ferrari, Tinne Tuytelaars, and Luc Van Gool. Simultaneous object recognition
and segmentation by image exploration. In Proc. ECCV, pages 40–54. Springer, 2004.

[8] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for
approximate nearest neighbor search. In Proc. CVPR, pages 2946–2953, 2013.

[9] Xiaojie Guo and Xiaochun Cao. Good match exploration using triangle constraint.
Pattern Recognition Letters, 33(7):872–881, 2012.

[10] Kiana Hajebi and Hong Zhang. Stopping rules for bag-of-words image search and its
application in appearance-based localization. arXiv preprint arXiv:1312.7414, 2013.

[11] Wilfried Hartmann, Michal Havlena, and Konrad Schindler. Predicting matchability. In
Proc. CVPR, 2014.

[12] Kaiming He, Fang Wen, and Jian Sun. K-means hashing: An affinity-preserving
quantization method for learning binary compact codes. In Proc. CVPR, pages 2938–
2945, 2013.

[13] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui Yoon. Spheri-
cal hashing. In Proc. CVPR, pages 2957–2964, 2012.

[14] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. STOC, pages 604–613, 1998.

[15] Herve Jégou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In Proc. ECCV, pages 304–317.
Springer, 2008.

[16] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the burstiness of visual elements.
In Proc. CVPR, pages 1169–1176. IEEE, 2009.

12 NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES

[17] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE PAMI, 33(1):117–128, 2011.

[18] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Exploiting descriptor distances for
precise image search. Technical Report 7656, INRIA, 2011.

[19] Alexis Joly and Olivier Buisson. Random maximum margin hashing. In Proc. CVPR,
pages 873–880, 2011.

[20] Il-Kyun Jung and Simon Lacroix. A robust interest points matching algorithm. In Proc.
ICCV, volume 2, pages 538–543. IEEE, 2001.

[21] Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization for
approximate nearest neighbor search. In Proc. CVPR, 2014.

[22] Seungjin Lee, Kwanho Kim, Joo-Young Kim, Minsu Kim, and Hoi-Jun Yoo. Familiarity
based unified visual attention model for fast and robust object recognition. Pattern
Recognition, 43(3):1116–1128, 2010.

[23] Yunpeng Li, Noah Snavely, and Daniel P Huttenlocher. Location recognition using
prioritized feature matching. In Proc. ECCV, pages 791–804. Springer, 2010.

[24] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):
91–110, 2004.

[25] David Nistér and Henrik Stewénius. Scalable recognition with a vocabulary tree. In
Proc. CVPR, pages 2161–2168, 2006.

[26] Mohammad Norouzi, Ali Punjani, and David J. Fleet. Fast search in hamming space
with multi-index hashing. In Proc. CVPR, pages 3108–3115, 2012.

[27] Michal Perd’och, Ondrej Chum, and Jiri Matas. Efficient representation of local geome-
try for large scale object retrieval. In Proc. CVPR, pages 9–16. IEEE, 2009.

[28] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Object
retrieval with large vocabularies and fast spatial matching. In Proc. CVPR, 2007.

[29] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Lost
in quantization: Improving particular object retrieval in large scale image databases. In
Proc. CVPR, pages 1–8, 2008.

[30] Danfeng Qin, Christian Wengert, and Luc J. Van Gool. Query adaptive similarity for
large scale object retrieval. In Proc. CVPR, pages 1610–1617, 2013.

[31] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient
alternative to sift or surf. In Proc. ICCV, pages 2564–2571, 2011.

[32] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-based localization using
direct 2d-to-3d matching. In Proc. ICCV, pages 667–674. IEEE, 2011.

[33] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving image-based localization
by active correspondence search. Proc. ECCV, pages 752–765, 2012.

NIEDERMAYER, KROEGER: MINIMIZING MATCHING QUERIES 13

[34] Frederik Schaffalitzky and Andrew Zisserman. Multi-view matching for unordered
image sets, or “how do i organize my holiday snaps?”. In Proc. ECCV, pages 414–431.
Springer, 2002.

[35] Cordelia Schmid and Roger Mohr. Combining greyvalue invariants with local constraints
for object recognition. In Proc. CVPR, pages 872–877. IEEE, 1996.

[36] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object
matching in videos. In Proc. ICCV, pages 1470–1477, 2003.

[37] Giorgos Tolias, Yannis Kalantidis, Yannis Avrithis, and Stefanos Kollias. Towards
large-scale geometry indexing by feature selection. Computer Vision and Image Under-
standing, 120:31–45, 2014.

[38] Antonio Torralba, Robert Fergus, and Yair Weiss. Small codes and large image databases
for recognition. In Proc. CVPR, 2008.

[39] Tomasz Trzcinski, Mario Christoudias, Pascal Fua, and Vincent Lepetit. Boosting binary
keypoint descriptors. In Proc. CVPR, pages 2874–2881. Ieee, 2013.

[40] Panu Turcot and David G Lowe. Better matching with fewer features: The selection of
useful features in large database recognition problems. In Computer Vision Workshops,
2009, pages 2109–2116. IEEE, 2009.

[41] Zhong Wu, Qifa Ke, Michael Isard, and Jian Sun. Bundling features for large scale
partial-duplicate web image search. In Proc. CVPR, pages 25–32. IEEE, 2009.

[42] Wengang Zhou, Yijuan Lu, Houqiang Li, and Qi Tian. Scalar quantization for large
scale image search. In Proc. MM, pages 169–178, 2012.

