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Figure 1: 1DSFM [4] and triplet-based methods (e.g. [3]) require strong
association among images. As shown in the left, they fail for images with
weak association. In comparison, as shown in the right, the results from
our method do not suffer from such problems.

Global structure-from-motion (SfM) algorithms register all cameras
simultaneously, which are potentially more efficient and less prone to
drifting than incremental SfM methods. Global SfM methods often solve
the camera orientations and positions separately. This paper focuses on
the problem of global position (i.e. translation) estimation.

Essential matrix based global translation estimation methods (e.g.
[1]) usually degenerate at collinear camera motion because the transla-
tion scale is not determined by an essential matrix. Trifocal tensor based
methods (e.g. [3]) usually rely on a strongly connected camera-triplet
graph, where two triplets are connected by their common edge. The 3D
reconstruction will distort or break into disconnected components when
such strong association among images does not exist. The recent 1DSfM
method [4] designs a smart filter to discard outlier essential matrices and
solves scene points and cameras together by enforcing orientation consis-
tency. However, this method requires abundant association between input
images, e.g.∼O(n2) essential matrices for n cameras, which is more suit-
able for Internet images and often fails on sequentially captured data.

The data association problem of [4] and [3] is exemplified in Figure 1.
The Street example on the top is a sequential data where each image is
only matched upto 4 neighbors. 1DSfM fails on this example due to in-
sufficient image association. In the Seville example on the bottom, those
Internet images are mostly captured from two viewpoints (see the two
representative sample images) with weak affinity between images at dif-
ferent viewpoints. This weak data association causes seriously distorted
reconstruction for the triplet-based method in [3].

This paper introduces a direct linear algorithm to address the pre-
sented challenges. It avoids degeneracy at collinear motion and deals
with weakly associated data. Our method capitalizes on constraints from
essential matrices and feature tracks. As shown in Figure 2 (a), the loca-
tion of a scene point p can be computed as the middle point of the mutual
perpendicular line segment AB of the two rays passing through p’s image
projections:

p =
1
2
(A+B) =

1
2
(ci + simi + c j + s jm j). (1)

Here, ci and c j are the two camera centers. The two unit vectors mi and
m j origin from the camera centers and point toward the image projections
of p. si and s j are the distances from the points A,B to ci,c j respectively.

We use the rotation trick in [3] to compute mi and m j by rotating the
relative translation direction ci j between ci and c j , i.e. mi = R(θi)ci j and
m j =−R(θ j)ci j . Then Equation 1 becomes
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Figure 2: (a) The positions of a scene point p and two camera centers ci
and c j satisfy a linear constraint. (b) The positions of four cameras seeing
the same scene point satisfy a linear constraint.

p =
1
2

(
ci + siR(θi)

c j− ci∥∥c j− ci
∥∥ + c j + s jR(θ j)

ci− c j∥∥ci− c j
∥∥
)
. (2)

The two 3D rotation matrices R(θi) and R(θ j) rotate the relative trans-
lation direction ci j to the directions mi and m j . Both rotations can be
computed easily in the local pairwise reconstruction. In addition, the two
ratios si/

∥∥c j− ci
∥∥ and s j/

∥∥c j− ci
∥∥ can be computed by the middle-point

algorithm [2]. Thus, Equation 2 is reduced to,

p =
1
2

(
(Ai j

j −Ai j
i )(ci− c j)+ ci + c j

)
(3)

where Ai j
i = si/||c j− ci||R(θi) and Ai j

j = s j/||ci− c j||R(θ j) are known
matrices. This equation provides a linear constraint among positions of
two camera centers and a scene point.

If the same scene point p is visible in two image pairs ci,c j and ck,cl
as shown in Figure 2 (b), we obtain two linear equations about p’s position
according to Equation 3. We can eliminate p from these equations to
obtain a linear constraint among four camera centers as the following,

(Ai j
j −Ai j

i )(ci− c j)+ ci + c j = (Akl
l −Akl

k )(ck− cl)+ ck + cl . (4)

Given a set of images, we build feature tracks and collect such linear
equations from camera pairs on the same feature track. Solving these
equations will provide a linear global solution of camera positions. To re-
solve the gauge ambiguity, we set the orthocenter of all cameras at origin
when solving these equations.

This direct linear method minimizes a geometric error, which is the
Euclidean distance between the scene point to its corresponding rays of
projection. A key finding in this paper is that, a direct linear solution
(without involving scene points) exists by minimizing the point-to-ray
error instead of the reprojection error. Since the point-to-ray error ap-
proximates the reprojection error well when cameras are calibrated, our
method is a good linear initialization for the final nonlinear BA. At the
same time, we minimize the L1 norm when solving the linear equation
of camera positions. We derive a linearization of the alternating direction
method of multipliers algorithm to address the L1 optimization problem.
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