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Abstract

Many existing approaches to person re-identification (Re-ID) are based on supervised
learning, which requires hundreds of matching pairs to be labelled for each pair of cam-
eras. This severely limits their scalability for real-world applications. This work aims to
overcome this limitation by developing a novel unsupervised Re-ID approach. The ap-
proach is based on a new dictionary learning for sparse coding formulation with a graph
Laplacian regularisation term whose value is set iteratively. As an unsupervised model,
the dictionary learning model is well-suited to the unsupervised task, whilst the regu-
larisation term enables the exploitation of cross-view identity-discriminative information
ignored by existing unsupervised Re-ID methods. Importantly this model is also flexi-
ble in utilising any labelled data if available. Experiments on two benchmark datasets
demonstrate that the proposed approach significantly outperforms the state-of-the-arts.

1 Introduction

Person re-identification (Re-ID) is the problem of matching people across non-overlapping
camera views. It has received increasing attention in the past five years due to its huge po-
tentials for security and safety management applications. Despite the best efforts from the
computer vision researchers, it remains an unsolved problem. This is because a person’s ap-
pearance often changes dramatically cross camera views due to changes in pose, occlusion,
lighting, and illumination conditions. To overcome these challenges, most existing works
[6, 10, 13, 14, 17, 27, 28, 30] employ a large number of labelled matching pairs across each
two camera views to learn a matching function that is invariant to the appearance changes.
However, these supervised learning-based approaches have poor scalability. More specif-
ically, even for a camera network of moderate size, e.g. one installed in an underground
station, there can be easily over one hundred cameras. Since hundreds of labelled image
pairs are needed for each pair of these cameras, the labelling cost would be prohibitively
high. This scalability issue thus severely limits the applicability of the existing methods.
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In order to make a person Re-ID model scalable, one solution is to utilise the unlabelled
data, which are abundant in the context of Re-ID – in a busy public space, thousands of
people pass by in each camera view everyday. There are a few existing efforts on exploit-
ing unlabelled data for unsupervised Re-ID modelling [8, 20, 26]. However, compared to
supervised learning approaches, the matching performance of unsupervised models are typ-
ically much weaker, rendering them less effective. This is not surprising because none of
them benefits from labelled cross-view discriminative information in every camera pairs.
Such identity-discriminative information is vital in person re-identification and is the reason
why those supervised learning based methods achieve much higher matching accuracy. In
general, without cross-view data labels, this information is very difficult to obtain.

In this work, we propose a novel unsupervised learning model for person re-identification
that can learn cross-view person identity-discriminative information from unlabelled data.
Our model is based on a dictionary learning for sparse coding framework. That is, we at-
tempt to learn a set of dictionary atoms, of which each corresponds to a latent attribute that is
invariant across camera views, therefore useful for matching. Conventional dictionary learn-
ing approaches are unsupervised [1], designed for learning a set of linear bases to minimise
signal reconstruction errors. They are unsuitable for learning any discriminative information
across camera views. To overcome this limitation, we introduce a cross-view graph Lapla-
cian regularisation term in our dictionary learning formulation. This term captures a soft
cross-view correspondence relationship across camera views, meaning that visually similar
people across views are more likely to have the same identity. Our model aims to preserve
this relationship in a subspace spanned by the learned dictionary bases. The value of the reg-
ularisation term is computed iteratively so that the initially noisy soft-correspondence can be
improved when it is computed in the subspace defined by the dictionary atoms rather than the
original feature space. Importantly, the same regularisation term can accommodate various
amounts of labelled data when available, whilst keeping the ability to exploit the unlabelled
data. This makes our model extremely flexible for various application scenarios.

Our contributions are as follows: (1) A novel regularised dictionary learning-based per-
son Re-ID model is proposed for exploiting unlabelled data, which makes the model scalable
to large-scale Re-ID problems. (2) The model offers a flexible solution to utilising unlabelled
as well as arbitrary amount of labelled cross-view data. Extensive experiments are carried
out on two large benchmark datasets. The results show that the proposed model outperforms
the state-of-the-art unsupervised approaches. Furthermore, it is clearly superior to the exist-
ing semi-unsupervised methods and remains competitive even under the conventional fully
supervised setting.

2 Related Work
Supervised Re-ID. Most Re-ID approaches rely on labelled data (cross-view matched image
pairs) and are based on supervised distance metric or ranking learning models [6, 10, 13,
14, 17, 27, 28, 30]. Most of the models are non-linear, and many of them are kernelised
(e.g. [27]) to cope with the complex appearance variations across camera views. In contrast,
the proposed model does not rely on labelled data, thus is not limited by the prohibitively
high labelling cost in large scale problems involving hundreds of cameras. Our model also
differs in that it is a linear model. Surprisingly it can beat the most competitive non-linear
models even under the fully supervised setting which they were designed for.
Learning from unlabelled data. Existing unsupervised Re-ID models rely on hand-crafted
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appearance features [8, 20, 22] or localised saliency statistics [26, 29]. Both types of meth-
ods have their limitations: for the hand-craft feature- based methods, it is very hard to obtain
effective identity-discriminative features by manual design, due to the unknown large cross-
view covariates. Saliency-based methods, on the other hand, rely on a representative refer-
ence set, and again are not able to explicitly exploit the cross-view identity-discriminative
information. These unsupervised methods thus typically achieve much weaker matching
accuracy than those supervised methods. As a comprise between scalability and matching
accuracy, recently a semi-supervised Re-ID model is proposed which is based on a coupled
dictionary learning method [21]. Similar to our model, the use of a dictionary learning for
sparse coding model enables the model to utilise unlabelled data. However, those data are
only used to minimise the reconstruction error within each camera view independently from
other views. Instead, we use the cross-view soft correspondence relationship to learn more
discriminative information from the unlabelled data. Our experiments (Section 4) show that
our model is superior to existing unsupervised and semi-supervised models for Re-ID.
Dictionary learning and Sparse coding. Beyond person Re-ID, dictionary learning for
spare coding has been extensively studied [1, 15]. Graph Laplacian regularisation has also
been explored in a sparse coding formulation before, for problems such as unsupervised
clustering [9, 31], or supervised face verification/recognition [11]. Unlike these works, we
are dealing with an unsupervised verification problem. As a result, the regularisation term
is computed differently to capture the soft cross-view correspondence relationship between
camera views. Furthermore, our model is learned iteratively with the regularisation term
updated in each iteration to improve the cross-view correspondence relationship captured by
the regularisation term. In particular, initialised in the noisy visual feature space, the soft-
correspondence is computed in a subspace of lower-dimension defined by the dictionary
atoms learned from the previous iteration. Such a space is progressively more discriminative
for matching people across camera views.

3 Methodology

3.1 Problem Definition
Suppose a set of training person images are collected from a pair of camera views denoted as
A and B respectively. An n-dimensional feature vector is computed from each person’s image
to represent ones appearance. Let’s denote the training data matrix as X = [Xa, Xb] ∈ Rn×m

where Xa = [xa
1, ... ,x

a
m1
] ∈ Rn×m1 contains the feature vectors of m1 images in view A as

columns, while Xb = [xb
1, ... ,x

b
m2
] ∈ Rn×m2 does the same for the m2 images in view B. We

thus have m = m1 +m2. Note, the training data are unlabelled therefore it is unknown which
person observed in view A corresponds to a given person in view B and vice versa. The
objective of unsupervised person Re-ID is to learn a matching function f from X , so that
given xa and xb representing two test person images from A and B respectively, f (xa,xb) can
be used for matching their identities.

3.2 Dictionary Learning with Graph Laplacian Regularisation
Our solution to the problem defined above is to learn a shared dictionary D ∈ Rk×m for the
two camera views using X . With this dictionary, each n-dimensional feature vector, regard-
less which view it comes from, is projected into a lower k-dimensional subspace spanned by

Citation
Citation
{Farenzena, Bazzani, Perina, Murino, and Cristani} 2010

Citation
Citation
{Lisanti, Masi, Bagdanov, and Bimbo} 2013

Citation
Citation
{Ma, Su, and Jurie} 2012

Citation
Citation
{Wang, Gong, and Xiang} 2014

Citation
Citation
{Zhao, Ouyang, and Wang} 2013

Citation
Citation
{Liu, Song, Tao, Zhou, Chen, and Bu} 2014

Citation
Citation
{Aharon, Elad, and Bruckstein} 2006

Citation
Citation
{Kenneth, M.Joseph, Bhaskar, Kjersti, Te-Won, and Terrence} 2003

Citation
Citation
{Gao, Tsang, Chia, and Zhao} 2010

Citation
Citation
{Zheng, Bu, Chen, Wang, Zhang, Qiu, and Cai} 2011

Citation
Citation
{Guo, Jiang, and Davis} 2014



4 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

the k dictionary atoms (columns of D) so that they can be matched by the cosine distance in
this subspace. The underpinning idea is that each atom or the dimension of the subspace cor-
responds to a latent appearance attribute which is invariant to the camera view changes, thus
useful for cross-view matching. Formally, we aim to learn the optimal dictionary D, such
that the sparse code of X , denoted as Y = [Y a, Y b]∈Rk×m, where Y a = [ya

1, ... ,y
a
m1
]∈Rk×m1

and Y b = [yb
1, ... ,y

b
m2
] ∈Rk×m2 , can be used for matching the training data; and we wish the

same D can be generalised to match unseen test image pairs from the two views.
Using a conventional dictionary learning formulation, D and Y can be estimated as:

(D∗,Y ∗) = argmin
D,Y

‖X−DY‖2
F +α||Y ||1 (1)

where ‖X−DY‖2
F is the reconstruction error term evaluating how well a linear combination

of the learned atoms can approximate the input data, and ||.||F denotes the matrix Frobenious
norm; ||Y ||1 is the sparsity term favouring small number of atoms to be used for reconstruc-
tion; this term is weighted by α . It is clear from this formulation that the conventional
dictionary learning model only cares about how to best reconstruct X using D and Y , with-
out giving any consideration to whether the sparse code is meaningful for matching people
cross camera views. In order to make the learned dictionary discriminative for cross-view
matching, one must exploit cross-view identity discriminative information. With cross-view
labels, this can be achieved by forcing the two matched images to have identical sparse codes
[21]. However, without any labels available under our unsupervised setting, it is not possible
to use this conventional formulation for person Re-ID.

To overcome this problem, we introduce a graph Laplacian regularisation term in the
dictionary learning formulation, and rewrite Eq. (1) as

(D∗,Y ∗) = argmin
D,Y

‖X−DY‖2
F +α||Y ||1 +β

m

∑
i, j
||ya

i − yb
j ||22Wi j (2)

where β is the weight of the new regularisation term, and W ∈ Rm×m is a cross-view corre-
spondence matrix capturing the identity relationship between the people in Xa and Xb which
needs to be preserved after they are projected and become Y a and Y b. Note, since the train-
ing data are unlabelled, the true cross-view correspondence relationship is unknown. We
therefore use W to represent a soft cross-view correspondence relationship. That is, each
person in A can correspond to multiple people in B depending on their visual similarity.
Formally, given Xa and Xb we construct a nearest neighbour graph G across cameras with
m vertices, where each vertex represents a data point. W is then computed as the weight
matrix of G. More precisely, if xa

i is among the K-nearest neighbours of xb
j or vice versa,

Wi, j = ((xa
i )

T xb
j)/(||xa

i ||||xb
j ||); otherwise, Wi, j = 0. Given this regularisation term, we essen-

tially make an assumption that visually similar images are more likely to contain people of
the same identity, and their sparse code vectors should also be similar, i.e. having a small
distance measured by ||ya

i − yb
j ||22.

3.3 Optimisation
To solve the optimisation problem in Eq. (2), we first rewrite it as:

(D∗,Y ∗) = argmin
D,Y

‖X−DY‖2
F +α||Y ||1 +βTr(Y LY T ) s.t. ||di||2 ≤ 1, i = 1, ...,k (3)
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where the Laplacian matrix L is defined as L = Q−W , where Qii = ∑ j Wi j is the degree of
the ith node. It is important to point out that Eq. (3) is not convex for D and Y simultaneously,
although it is convex for each of them separately. We thus deploy an alternating optimisation
method to solve it. In particular we alternate between the following two subproblems:
(1) Fix Y , update D: Given Y , the objective function becomes

D∗ = argmin
D
‖X−DY‖2

F s.t. ||di||2 ≤ 1, i = 1, ...,k (4)

To solve Eq. (4), we use the Lagrange dual method [18]. The analytical solution of D can
be computed as: D∗ = XY T (YY T +Λ∗)−1, where Λ∗ is diagonal matrix constructed from all
the optimal dual variables. In practice, YY T +Λ∗ is not guaranteed to be invertible, therefore
pseudoinverse is used in place of computing it directly.

(2) Fix D, update Y : When D is fixed, we optimise each column of Y , yi alternatively rather
than optimise them simultaneously. Specifically, to optimise each yi, we fix the sparse codes
y j( j 6= i) for other local features. So the optimisation of the objective cost of Eq. (3) is
equivalent to optimising the following objective function:

y∗i = argmin
yi

L(yi)+α||yi||1, (5)

where L(yi) = ||xi−Dyi||2 +β (yT
i (Y Li)+ (Y Li)

T yi− yT
i Liiyi), and Li is the ith column of L

and Lii is the entry located in the ith column, ith row of L. We follow the widely used feature
sign search algorithm [9, 18] to estimate yi.

3.4 Iterative Updating the Regularisation Term

Note that when we compute the soft correspondence matrix W in Eq. (2), we used the cosine
distance of the low-level features to measure the visual similarity. However, the low-level
features are inevitably noisy and sensitive to the pose and lighting changes cross camera
views. This is precisely why we wanted to do the matching in a new lower dimensional
subspace defined by D rather than the n-dimensional low-level feature space. Now starting
with the noisy W , and after obtaining D and Y using the alternative optimisation algorithm
described above, we assume that the soft correspondence matrix W can now be better com-
puted using Y rather than X . Given updated W , we repeat the alternating optimisation process
to estimate D and Y . This iterative procedure stops when the cost function value converges.
Note that this is very different from existing methods with a graph Laplacian regularisation
term [9, 31], which stick to the same W or L matrix throughout the optimisation proce-
dure. We observe from our experiments that (1) This iterative updating procedure converges
rapidly (<5); and (2) it produces a marked improvement on the Re-ID performance compared
to the model learned without updating the regularisation term. We summarise all steps of our
method in Algorithm 1.
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Algorithm 1: Dictionary learning with iterative graph Laplacian regularisation
Input: Training samples X , weights α and β , the initial Laplacian matrix L0, number of

iterations T given the current L, a threshold T h
Output: The learned dictionary D

1 Initialisation: iteration index i = 0, objective function value O0 = 100;
2 while Oi−Oi−1 > T h do
3 for t = 1,2, ... , T do
4 Update sparse code Y using Eq. (5);
5 Update dictionary D using Eq. (4);
6 end
7 Compute objective function Oi using Eq. (2);
8 Compute the Laplacian matrix Li;
9 i = i+1;

10 end

3.5 Matching

After learning the dictionary D using unlabelled training data X , given a pair of test samples
xa

i and xb
i , we first compute their sparse codes ya

i and yb
i by solving the following functions:

ya∗
i = argmin

ya
i

‖xa
i −Dya

i ‖2
F +α||ya

i ||1. (6)

yb∗
i = argmin

yb
i

‖xb
i −Dyb

i ‖2
F +α||yb

i ||1. (7)

These are standard LASSO problems [25] and can be solved very efficiently using the
SPAMS toolbox [23]. After obtaining ya∗

i and yb∗
i , their matching is done by computing

the cosine distance between their respective sparse code vectors. Alternatively, we can use
l2−regularisation instead of l1−regularisation on coefficients. In this case, it will be sim-
ply regularised least squares problem, which has a closed-form solution: ya∗

i = (DT D +
αI)−1DT xa

i and yb∗
i = (DT D+αI)−1DT xb

i .

3.6 Extension to Semi-Supervised and Supervised Re-ID

Our model is designed primarily for unsupervised learning without any data labels. However,
it can be readily extended to other settings with minimal modification. Specifically, when
there are partially labelled cross-view image pairs, we simply set the corresponding Wi, j to
1 to turn that part of W to be hard correspondence, whilst keep the rest of the Wi, j computed
as KNN graph weights as before. The matrix W thus becomes a hybrid of hard and soft
correspondence matrix with only the soft part updated iteratively. When all the data are
labelled, i.e. the fully supervised setting, all values of Wi, j will be either 1 or 0 depending
whether the corresponding cross-view image pair contains the same person. Matrix W thus
becomes a hard correspondence matrix. In summary, when variable amount of data labels
are available, ranging from zero to full, the model remain unchanged apart from the W or the
Laplacian matrix L being computed. Our model is thus extremely flexible for deployment
under different settings.
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4 Experiments

4.1 Datasets and settings
Datasets. Two widely used benchmark datasets were used for experiments. VIPeR [7] con-
tains 632 image pairs of people captured outdoor from two non-overlapping camera views.
Following the standard setting, the dataset was randomly split into two sets of 316 image
pairs, one for training and the other for testing. For the test set, all images from one view is
used as the gallery set and the others probe set. The results for all evaluations were obtained
by averaging over the 10 splits publicly available from [8]. PRID [12] is different from
other available datasets in that the gallery and probe sets do not have exactly the same set of
people, which is a more realistic setting in practice. Specifically, it has two camera views.
View A captures 385 people, whilst View B contains 749 people. Only 200 people appear in
both views. In our experiments we used the single shot version of the dataset as in [10, 14],
i.e. one image per person per view. In each data split, 100 people with one image from each
view were randomly chosen from the 200 present in both camera views for the training set,
while the remaining 100 of View A were used as the probe set, and remaining 649 of View B
were used as gallery (containing the 100 people in the probe). Experiments were carried out
on the 10 splits as in [10, 14] with the averaged results reported.
Features. For person appearance representation, we used the histogram-based image de-
scriptor introduced in [10]. Specifically, three types of features, (1) Colour histogram, (2)
HOG [5] and (3) LBP [2], were concatenated resulting in a 5138-D feature vector [10].
Evaluation metric. We obtain conventional Cumulative Matching Characteristics (CMC)
curves for our models and other models with codes available. However, to compare with a
wider ranges of baselines, for which no code is available, we report cumulative matching
accuracies at different ranks which correspond to key points on the CMC curves.
Parameter settings. The parameters of our model were set to the following: the number of
nearest neighbours for computing W in Eq. (2), K = 3 (and we obtained similar results when
K < 6); the weight for the sparsity penalty term in Eq. (2), α = 0.0001 (we found empirically
that α should be in the range of 0.0001 and 0.3); the weight on the Laplacian regularisation,
β = 1 for VIPeR, β = 0.5 for PRID; the number of iteration, T = 50 (see Algorithm 1); and
the dictionary size, k = 256.

4.2 Unsupervised Re-ID
Competitors. Under this setting, we compared our approach with (1) the hand-crafted
feature-based methods including SDALF [8] and CPS [4]. These features are designed to
be view invariant. (2) The saliency learning-based eSDC [29] and GTS [26]. (3) The sparse
representation classification-based ISR [20]. Note that ISR is transductive in that it uses the
gallery set of the test data whilst none of other methods does.
Comparative results. From Table 1, the following observations can be made: (1) Our reg-
ularised sparse coding-based Re-ID model is clearly superior to all existing unsupervised
methods on both datasets. (2) The margin is bigger on the more challenging PRID dataset
which has a smaller training set and much bigger test gallery set than VIPeR. (3) Our unsu-
pervised ReID model is competitive even compared to the state-of-the-arts supervised meth-
ods. In particular, compared to the supervised Re-ID results in Table 3, our Rank 1 matching
accuracy for VIPeR (29.6%) is slightly better than a number of recently proposed models
such as LDFA [24] (29.3%) and MLF [30] (29.1%), and significantly better than earlier
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models such as RankSVM [3] (25.2%) and KISSME [16] (25.4%). On the more challenging
PRID datasets, our unsupervised method (21.1% at Rank 1) outperforms all existing super-
vised learning methods (see Table 3, the best results are 15% by RPLM [14] and EIML
[13]). This demonstrates clearly the effectiveness of the proposed new unsupervised Re-
ID model. (4) All learning-based models clearly outperform the handcrafted feature-based
methods (SDALF and CPS). (5) Both of the best two models (ours and ISR) are based on
sparse learning. But there are vital differences: ISR uses the test gallery set directly as dic-
tionary, whilst our model learns a dictionary from an unlabelled training set. Our model is
less expensive to compute and more flexible as once learned the sparse code is unchanged for
any test gallery and probe images. In contrast, using ISR, all codes need to be recomputed
when new people are added to the test gallery.

Dataset VIPeR PRID
Ranks Rank 1 Ranks 5 Rank 10 Rank 20 Rank 1 Rank 5 Rank 10 Rank 20
eSDC [29] 26.7 50.7 62.4 76.4 - - - -
SDALF [8] 19.9 38.9 49.4 65.7 16.3 29.6 38.0 48.7
ISR [20] 27.0 49.8 61.2 73.0 17.0 34.4 42.0 54.3
CPS [4] 22.0 44.7 57.0 71.0 - - - -
GTS [26] 25.2 50.0 62.5 75.8 - - - -
Ours 29.6 54.8 64.8 77.3 21.1 43.7 55.8 64.8

Table 1: Unsupervised Re-ID results on VIPeR and PRID

4.3 Semi-supervised Re-ID
Setting and competitors. In this experiment, one third of the labels of the training data
are provided as in [21]. Only one semi-supervised Re-ID method exists: SSCDL[21] which
is also based on dictionary learning but does not exploit cross-view identity-discriminative
information using the unlabelled data as in our model. In addition to SSCDL, we also com-
pared with a number of fully-supervised models including the classic RankSVM [3] and
KISSME [16], and the state-of-the-arts MFA [27], kLFDA [27] and KCCA [10]. These fully
supervised model can only use the one-third labelled training data. All of their codes are pub-
lically available therefore we used the same features. In contrast, SSCDL is a patch-based
matching approach, thus their reported results are used for comparison.
Comparative results. Table 2 reveals the the following findings: (1) Again, our model as
a semi-supervised method is clearly superior to the existing approach namely SSCDL. This
highlights the importance of learning cross-view discriminative information from unlabelled
data. (2) Compared to our results under the unsupervised setting (Table 1), the improvements
indicate that our model benefits from both labelled and unlabelled data. (3) The supervised
models, learned using the one third labelled training data only, are clearly inferior. This is
particularly the case on the PRID dataset. For PRID, one third of the training set only gives
33 labelled pairs, which is evidently not enough for the existing supervised learning models
to learn a useful matching function, as indicated by the significantly worse results obtained
by KLFDA and KCCA (14.1% and 5.3% respectively, compared to 22.1% by our model).

4.4 Supervised Re-ID
Competitors. With all training data labelled, we compared with 9 methods: RankSVM [3],
KISSME [16], kLFDA [27], MFA [27], KCCA [10], MLF [30], LFDA [24], EIML [13],
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Dataset VIPeR PRID
Ranks Rank 1 Ranks 5 Ranks 10 Ranks 20 Rank 1 Rank 5 Rank 10 Rank 20
RankSVM [3] 20.7 41.8 54.6 68.1 - - - -
KISSME [16] 18.5 43.7 57.9 74.5 5.1 15.2 24.1 40.1
kLFDA [27] 27.5 56.0 69.6 82.6 14.1 33.7 44.0 56.2
KCCA [10] 24.6 56.2 71.7 85.6 5.3 15.7 25.8 37.0
MFA [27] 25.3 53.6 66.7 78.8 13.3 32.5 43.3 56.4
SSCDL [21] 25.6 53.7 68.2 83.6 - - - -
Ours 32.5 61.8 74.3 84.1 22.1 45.3 56.5 66.3

Table 2: Semi-supervised Re-ID results on VIPeR and PRID

RPLM [14], most of which are distance metric learning-based ones.
Comparative results. The results in Table 3 show that our model, when deployed under the
conventional setting, is still very competitive. In particular, on VIPeR, our Rank 1 matching
rate of 38.9% is only slightly worse than that of KLFDA (40.7%), whilst being better than all
other compared methods1. On the more challenging PRID, our result is significantly better
than all competitors. Note that our model is designed for unsupervised learning and under the
fully supervised setting, both the soft-correspondence and iterative Laplacian regularisation
features are inapplicable. The significant advantage of our model over the others can only
be explained by the ability to jointly learn a set of view-invariant and identity-discriminative
latent attributes by dictionary learning.

Dataset VIPeR PRID
Ranks Rank 1 Ranks 5 Ranks 10 Ranks 20 Rank 1 Rank 5 Rank 10 Rank 20
RankSVM [3] 25.2 48.1 60.3 74.8 - - - -
KISSME [16] 25.4 53.3 67.7 82.1 10.2 26.1 37.4 53.2
kLFDA [27] 40.7 70.0 81.2 90.8 19.7 44.9 56.4 65.9
MLF [30] 29.1 52.3 66.0 79.9 12.3 20.9 27.1 35.1
MFA [27] 33.5 65.2 77.2 87.3 17.4 39.1 52.6 64.5
LDFA [24] 29.3 61.0 76.0 88.1 18.9 42.9 54.4 66.3
KCCA [10] 37.2 71.8 84.6 92.7 14.5 34.3 46.6 59.1
RPLM [14] 27.0 - 69.0 83.0 15.0 - 42.0 54.0
EIML [13] 22.0 - 63.0 78.0 15.0 - 38.0 50.0
Ours 38.9 70.8 78.5 86.1 25.2 51.9 62.9 71.6

Table 3: Supervised Re-ID results on VIPeR and PRID.

4.5 Further Analysis
Effects of iterative Laplacian Regularisation. One of the key features that distinguishes
our model from conventional dictionary learning for sparse coding models is that we intro-
duced a cross-view graph Laplacian regularisation term in our dictionary learning formula-
tion whose value is updated iteratively. Table 4 compares the performance of Re-ID under
both unsupervised and semi-supervised settings with and without the iterative updating of
the regularisation term. It shows that there is marked improvement when the regularisation
term is updated. The improvement is bigger under the unsupervised setting – without any
labelled data, the soft-correspondence matrix W is obtained entirely using low-level features,
thus noisier than that under semi-supervised setting; iterative updating to improve the matrix
is therefore more beneficial.

1Note that MLF [30] achieved a higher Rank 1 result (43.39%) when combined with LADF [19].
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VIPeR PRID
Unsupervised Semi-supervised Unsupervised Semi-supervised

without iteration 25.4 28.8 16.2 19.9
with iteration 29.6 32.5 21.1 22.1

Table 4: Rank 1 matching accuracy of our model with and without iterative updating the
graph Laplacian regularisation term.

Running costs. Our model can run very efficiently. For example, on VIPeR, for each image,
once the features are extracted, the sparse coding part took 0.023s for each image based
on a desktop machine with Intel CPU at 3.30GHz and memory of 8.0 GB with MATLAB
implementation. Following that, matching one pair of images only involves computing a
cosine distance between their sparse codes.

5 Conclusion
We have proposed a novel unsupervised person Re-ID method based on a regularised dictio-
nary learning approach. Compared to existing models, our method is unique in that it can
exploit unlabelled data to learn cross-view identity-discriminative information due to a new
graph Laplacian formulation updated iteratively. Experiments on two benchmark datasets
show that the proposed model significantly outperforms existing methods under various set-
tings including unsupervised, semi-supervised and fully supervised.
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