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Abstract

It is not always possible to recognise objects and infer material properties for a scene
from visual cues alone, since objects can look visually similar whilst being made of very
different materials. In this paper, we therefore present an approach that augments the
available dense visual cues with sparse auditory cues in order to estimate dense object
and material labels. Since estimates of object class and material properties are mutually-
informative, we optimise our multi-output labelling jointly using a random-field frame-
work. We evaluate our system on a new dataset with paired visual and auditory data
that we make publicly available. We demonstrate that this joint estimation of object and
material labels significantly outperforms the estimation of either category in isolation.

1 Introduction
The ability to segment visual data into semantically-meaningful regions is vitally important
in many computer vision scenarios, including automatic scene description [37], autonomous
robot navigation [35], grasping [4] and assisted navigation for the visually-impaired [25].
Although existing semantic segmentation methods [5, 13, 17, 22, 34, 38] have achieved
impressive results, their reliance on visual features makes it hard for them to distinguish
between distinct object classes that are visually similar, even when the classes have different
material properties.

An example of this can be seen in Fig. 1(a), in which the table, wall and mug all look very
similar in terms of local colour and texture, even though the table is made from wood, the
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(a) (b) (c)

Figure 1: (a) An image of a typical office desk. Notice the minimal amount of texture or colour
present in the image. The yellow boxes indicate places in which we tap objects to produce audio
features. (b) The results of predicting materials for the scene using only visual features (red = wood,
purple = plastic, pink = ceramic, gold = gypsum). (c) The improved predictions obtained when we
additionally incorporate audio features. The improvements for the monitor, keyboard and phone are
especially noticeable.

wall from gypsum and the mug from ceramic. In this case, knowing the material properties
of the different entities would help in disambiguating between them, but such knowledge
can be difficult or impossible to acquire from visual data alone. One way of resolving this
problem is to make use of additional sensory modalities to complement the available visual
information. For example, Miksik et al. [24, 25] used an active laser to help a passive camera
resolve ambiguities in dense matching and depth estimation.

The problem of determining the material properties of objects based only on their visual
appearance is difficult not just for computers, but also for human beings. One way in which
we tend to resolve this problem in real life is to make use of the sounds that an object makes
when we tap it to infer its properties. In this paper, we therefore present an approach that
uses sound to augment the available dense visual cues with sparse auditory cues in order to
estimate material labels, and then uses this information to improve object labelling as well.
This approach is inspired by the McGurk effect – a perceptual phenomenon which shows
that humans process auditory and visual information jointly when interpreting speech [18].

The difference that this makes to material labelling can be seen in Fig. 1. In (b), we
see the results of performing a visual-only segmentation to produce material labels for the
scene in (a): observe how it has failed to predict correct material labels for the mug and
telephone, while also making errors on the monitor and keyboard. By contrast, when we tap
various objects in the scene (a) to produce audio features that we can incorporate into our
segmentation process, the predicted material labels significantly improve (c). These better
material predictions are not only intrinsically useful, but also help us achieve better object-
class predictions (Section 5.1).

Existing object segmentation datasets [6, 7, 13, 30, 31, 36] do not provide audio-visual
annotations as ground truth. Furthermore, it is not possible to simply augment them with
audio data, since we would need the original objects in the dataset in order to extract sound.
For these reasons, we designed our own indoor dataset (Section 3) with dense per-pixel ob-
ject category and material labels, which we make publicly available. We demonstrate the
effectiveness of our approach on this new dataset by showing that it produces semantic seg-
mentation results that are significantly better than those obtained when using visual features
alone.
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2 Background
Sinapov et al. [32] investigated using sound emitted from an object to predict its object
category, classifying small objects based on sounds generated when interacting with a robotic
arm (including the sound of the robot’s motors). Harrison [15] observed that the sound
emitted from an object may be used to predict its material category when exploring three
objects (hand, paper, LCD) in the context of human-computer interaction. Inspired by these
approaches, we make an alternate use of sound for semantic image segmentation, firstly to
help predict the materials of everyday objects, and secondly to use these material predictions
to refine our overall predictions of object categories. The use of audio data has also been
beneficial in other vision contexts such as the detection of violent scenes in videos [10],
object tracking [3, 8] and human action recognition [28].

The sounds that we perceive (and microphones sense) are pressure waves travelling
through the air [16]. When an object is struck, particles within it vibrate. Pressure waves are
then transmitted through the object (and potentially reflected as well). The object’s density
and volume determine the transmission and reflection of the emitted sound waves. Thus, the
sound that an object emits is more dependent on the material from which it is made than
its object class. By using sound, we are able to infer information about an object’s material
properties that would be difficult or impossible to obtain by visual means. We propose that by
making use of sound to complement the existing visual data, we can capture discriminative
information and achieve significant improvements in object recognition.

Approaches involving the estimation of multiple labels in images are plentiful. For ex-
ample, Goldluecke et al. [11] used convex relaxation in order to jointly optimise for depth
and occlusions in a scene. Taking advantage of the dependencies between pairs of pixel
labels, several authors [14, 19, 21, 34] observed a significant improvement in object class
and depth estimation in comparison to estimating them independently. Here, we consider
estimating the overall category and material properties of an object, which are related and
mutually beneficial. As an example, tables are often made of wood, whilst mugs are not.

Due to the success of the aforementioned approaches, we adopt a similar random field
framework to [21, 34] in which to optimise a joint energy. To provide the necessary inputs to
our framework, we employ similar object class features to Ladicky et al. [21], with additional
material features derived from both auditory and visual data. Our auditory data is obtained
by tapping the objects of interest with a human knuckle, and is therefore sparsely-distributed
over the scene. As a result, it makes sense for us to use visual features as well in order to help
predict material properties for areas of the scene for which we do not have audio. We lever-
age recent advances in solving densely-connected pairwise conditional random field (CRF)
models [17, 34] to implement our proposed object-material multi-label inference approach.

3 Audio-Visual Dataset
The new dataset on which we evaluate our approach consists of 9 long reconstruction se-
quences1, containing on average 1600 individual 640×480 RGB-D frames. The sequences
were captured using a consumer-grade depth camera (an ASUS Xtion Pro) running at 30
FPS. We annotated these sequences using 20 different object classes and 11 material types.
In the supplementary material, we show the distributions of these labels and sample images
with associated ground-truth labels.

1Available at: http://www.robots.ox.ac.uk/~tvg/projects/AudioVisual/
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Figure 2: Illustration of the labelling pipeline. (a) A sequence of colour and depth images are
captured using an RGB-D camera. (b) The scene is reconstructed by integrating the depth images, and
then manually labelled in 3D. Note that only object labels are shown in (b). (c) Ground-truth labellings
associated with the colour images captured in (a), generated by raycasting the 3D reconstruction (b)
from different viewpoints.

Our dataset differs from other segmentation datasets [6, 7, 13, 30, 31, 36] in a number of
important ways. Firstly, we provide sparse audio data that characterise the sounds emitted by
objects when they are struck by a human knuckle, together with dense labels indicating both
object and material categories for every pixel in the scene (by contrast, existing datasets do
not provide material categories). Secondly, our dataset focuses on realistic, cluttered indoor
scenes in which little to no contrast or texture is present. As illustrated by our experiments in
Section 5.1, these scenes are significantly harder to segment than those in existing datasets;
indeed, we carefully designed the dataset to be extremely challenging for state-of-the-art
labelling techniques. Thirdly, in contrast to previous datasets, our dataset was annotated in
3D: this not only reduced the manual effort required to label the scenes, but made it easier for
us to achieve consistent labellings of the scene from different viewpoints. Such consistent
labellings are particularly useful for testing temporally-consistent video segmentation, as the
difficulties encountered by [19, 23] in evaluating segmentation performance without having
per-frame ground truth annotations on the CamVid dataset [6] will not be encountered.

Annotation using 3D reconstructions of scenes. In order to annotate each scene in our
dataset in 3D, we first reconstructed it from a sequence of depth images (Fig. 2a), using
the online 3D reconstruction system of [26, 29]. Each reconstructed scene was then manu-
ally annotated in 3D (Fig. 2b) using an interactive scene segmentation framework [12, 33].
Finally, 2D ground truth labellings of the scene (Fig. 2c) were generated for each original
viewpoint by raycasting the labelled 3D scene.

This approach allowed us to forgo the time- and labour-intensive process of labelling
each image individually by hand [7, 30, 31]. Typically, we were able to label an image
sequence of 2000 frames in approximately 45 minutes, which compares favourably with
the 20-25 minutes that was required to annotate each frame of the CamVid database by
hand [6]. Moreover, most of our annotation time (35 out of 45 minutes) was spent refining
the labelling of object boundaries. Although our method of labelling was limited by the
available resolution of the depth sensor and was not able to capture glass objects (since the
infrared light used by structured light sensors such as the Xtion is absorbed by glass), it
drastically reduced the time required to obtain per-pixel annotations of the images.

Auditory data. In addition to capturing images of the scene, uncompressed audio was
also recorded for specific scene objects using a high-quality portable condensor microphone
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(Samson GoMic at 44.1kHz). Note that the collected audio data can be used independently
for audio classification, such as in [32]. In total, we collected approximately 600 sounds from
50 different objects and 9 material categories. The objects we struck are detailed further in
the supplementary material. Due to the localised nature of sounds emitted from objects, we
can only associate sound data with the points at which they were struck. We perform this by
annotating the approximate location at which the object was struck in the 3D reconstruction.
The exact number of pixels associated with a sound measurement in the 2D projection (yel-
low polygons in Fig. 1a) then depends on the viewpoint (for example, more pixels will be
associated when zoomed in on the object). The median number of pixels associated with a
sound is 575, which is 0.18% of the total number of pixels in the image.

Training, validation and test folds. Our training, validation and test folds were approxi-
mately 55%, 15% and 30% of the total data respectively. As detailed in the supplementary
material, these folds were chosen so that images in the test set were not from the same scenes
as the images in the training and validation sets.

4 Methodology
As mentioned in Section 1, estimating material properties from visual data alone can be
difficult, and so it can be helpful to incorporate audio information to help distinguish between
visually-similar materials. However, since audio information obtained by tapping objects is
only available at sparse locations in an image, we need a way of propagating this information
to the whole image. To achieve this, we introduce a densely-connected, pairwise Conditional
Random Field (CRF) model that supports long-range interactions and enforces consistency
between connected nodes. In practice, since estimates of object and material properties can
be mutually informative, we use a two-layer CRF to model the joint estimation of object and
material labels, and allow the two types of estimate to influence each other by connecting
the two layers of the CRF with joint potentials.

4.1 Random Field Model
We model the joint estimation of object and material labels in an energy minimisation frame-
work. Each image pixel i ∈ V = {1, ...,N} is associated with a discrete random variable
Xi = [Oi,Mi] that takes a label xi = [oi,mi] from the product label space of object and mate-
rial labels, O×M. In our case, the object labels O = {o1, ...,oO} correspond to different
object classes such as desk, wall and floor, whilst the material labelsM= {m1, ...,mM} refer
to classes such as wood, plastic and ceramic. We wish to find the best (maximum a poste-
riori) labelling x∗ = [o∗,m∗] associated with the minimum energy of the two-layer CRF,
expressed in its general form as

P(x|D) =
1

Z(D)
exp(−E(x|D)), E(x|D) = ∑

c∈C
ψc(xc|D), (1)

where E(x|D) is the energy associated with labelling x, conditioned on the visual and audi-
tory data D = {I,A}, Z(D) = ∑x′ exp(−E(x′|D)) is the (data-dependent) partition function
and each clique c ∈ C induces a potential ψc(·).

Joint Model. Since we are jointly estimating object and material labellings, we define a
two-layer CRF energy function over discrete variables O and M respectively [34]. The two
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Objects

Materials

Figure 3: Model of our Random Field formulation, focusing on nodes Oi and Mi. The variables,
O and M, corresponding to objects and materials respectively, are modelled as separate layers of a
fully-connected CRF with pairwise terms between each corresponding node Oi and Mi.

layers are then connected via pairwise potentials to take correlations between objects and
materials into account:

E(x|D) = EO(o|I)+EM(m|I,A)+EJ(o,m|I,A) (2)

In this, EO(o|I) is the energy for the object labelling, conditioned on image data I, EM(m|I,A)
is the energy for the material labelling, conditioned on image data I and audio data A, and
EJ(o,m|I,A) is the joint energy function linking the object and material domains. Without
the joint term in Equation 2, the energy would decompose into two, i.e. we would effectively
be solving an object CRF and a material CRF in parallel with no links between them (Fig. 3).

Object labelling. For object segmentation, we use a formulation with unary and densely-
connected pairwise terms allowing long-range interactions [17]

EO(o|I) = ∑
i∈V

ψ
O
u (oi)+ ∑

i< j∈V
ψ

O
p (oi,o j) (3)

In this, the unary potential terms ψO
u (·), implicitly conditioned on image data I, correspond

to the cost of pixel i taking an object label oi ∈ O, as described in Section 4.2. The pairwise
potential function ψO

p (·, ·) enforces consistency between the connected variables and takes
the form of a mixture of Gaussian kernels as in [17], allowing efficient mean-field inference
in densely-connected models. Like [17], the Gaussian kernel parameters are obtained using
cross-validation.

Materials. For materials, we use a similar energy function:

EM(m|I,A) = ∑
i∈V

ψ
M
u (mi)+ ∑

i< j∈V
ψ

M
p (mi,m j) (4)

In this, the unary ψM
u (·) and pairwise ψM

p (·, ·) potentials are implicitly conditioned on both
image data I and audio data A. As in the case of object labelling, our pairwise material
potential ψM

p (·, ·) takes the form of a mixture of Gaussian kernels. Our material unary is
defined to be the negative logarithm of a convex combination of visual and auditory terms:

ψ
M
u (mi) =

{
− ln

[
wav p(mi|I)+(1−wav)p(mi|A)

]
if audio data is present

− ln
[

wv p(mi|I)+(1−wv)U
]

otherwise,
(5)

where our visual term is defined to be p(mi|I) for each pixel i, whilst our auditory term is de-
fined to be p(mi|A) for the sparse set of pixels i for which audio information is available, and
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a uniform distribution U otherwise. The weights wav,wv ∈ [0,1] control the balance between
the two terms for pixels for which audio information is and is not available, respectively.

The justification for using a uniform auditory term when no sound information is avail-
able (rather than simply setting wv to 1 and relying on the available visual information) is
that it allows us to ameliorate any poor predictions made by the visual classifier. In partic-
ular, it is possible for the visual classifier to confidently predict an incorrect material class
for some pixels (see Section 5), which can inhibit the propagation of labels predicted by the
sound classifier through the image. By introducing a uniform auditory term, we can lessen
the influence of the visual classifier in such situations and allow the labels to propagate more
effectively.

Joint potentials. The energy EJ(o,m|I,A) = ∑i ψJ
p(oi,mi) captures the correlation be-

tween the object and material labels (Fig. 3). The joint potential ψJ
p(·, ·) connects random

variables in the two CRF layers [34], and is defined as the negative logarithm of the condi-
tional distribution of object and material labels observed from the training data:

ψ
J
p(oi,mi) =−wmo ln

(
p(oi|mi)

)
−wom ln

(
p(mi|oi)

)
. (6)

Inference. Given the energy function in Equation 2, and the form of the pairwise potentials
just described, we use an efficient filter-based variant of mean-field optimisation [1, 17] to
infer the optimal joint assignment of object and material labels. The mean-field update
equations for our CRF model can be found in the supplementary material.

4.2 Unary potentials
The per-pixel visual unary potentials were obtained by training a joint boosting classifier on
visual features, whilst auditory unary potentials were obtained by training a random forest
classifier on auditory features. The outputs of the two classifiers are probability distributions
over object and material categories, respectively, and these were converted to energies by
taking their negative logarithms.

Visual features. For our per-pixel visual features, we used the 17-dimensional Texton-
Boost filter bank of [30], adding colour, SIFT and LBP features in a manner similar to [20].

Auditory features. The sound recordings require windowing before classification, since
typically, a recording begins before the object is struck and ends after the sound has decayed.
To do this, we subdivided the input waveform into sub-windows of size l, and selected the k
consecutive windows with the highest `2 norm, as shown in Fig. 4. We rely on the assumption
that the sound of interest initially has the highest amplitude in the recording and then decays
over time. Optimal values of the integers l and k were determined by cross-validation.

From the isolated sound, we extracted the following features: energy per window, energy
entropy [10], zero crossing rate [9], spectral centroid, spread, flux, rolloff and entropy [2, 10].
The first three are computed in the time domain whilst the remainder are evaluated from the
spectra computed by the Short-Time Fourier Transform [27].

5 Experimental evaluation
In order to quantify the performance of our system, we evaluate it on the new dataset we
presented in Section 3 using the following performance measures: accuracy (the percentage
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Figure 4: Segmenting the sound of a wooden table being struck (a) The location where the table was
struck. (b) The recording of the waveform (with background noise before and after the actual contact),
subdivided into windows of l = 512 samples. (c) The sound segmented from the k = 30 consecutive
windows with the highest `2 norm (fewer windows have been shown for illustrative purposes).

Table 1: Per-class quantitative performance of the unary sound classifier

Material Plastic
Wood

Gypsum
Ceramic

Melamine

Tile Steel
Cotton

Average

Accuracy (%) 73.61 100 16.67 100 33.33 14.29 11.11 0 67.11
F1-Score (%) 82.81 59.52 16.67 97.30 42.86 20 20 0 42.39

of pixels labelled correctly), intersection-over-union score (as used in the PASCAL segmen-
tation challenge [7]) and F1-score (the harmonic mean of precision and recall [7]).

First, we evaluate the performance of our unary sound classifier to identify material cat-
egories likely to benefit from tapping. Next, we show the performance achieved when using
visual features to label object and material classes independently. Finally, we demonstrate
how incorporating auditory features can improve our predictions of material categories, and
the effect this has on improving the recognition of object classes after joint optimisation.

5.1 Quantitative results and discussion
Unary sound classifier performance. As seen in Table 1, our unary sound classifier pre-
dicts certain material classes (wood, ceramic, plastic) with high accuracy, since these mate-
rials produce distinctive sounds.

However, our sound classifier does not achieve perfect results, as the sound emitted from
an object is also determined by its density, volume and the pressure being applied to it [16].
We also observed the adverse effect that sound transmission has on recognition, e.g. knock-
ing a tile affixed to a wall causes the resultant pressure waves in the tile to propagate through
the wall. The end result is a sound wave that sounds similar to the wall and distinct from
the sound of knocking a tile placed on a wooden table. Striking a melamine whiteboard that
is affixed to a wall produces the same effect. Finally, striking objects such as cotton chairs
does not produce enough sound to accurately identify them.

Using visual features alone. Table 2 shows the accuracy in labelling objects and materials,
first using only visual features, and then introducing auditory cues as well. The performance
measures we obtain from training our pixel classifiers using only visual features, and a CRF
with unary and pairwise terms (third row), serves as the baseline for when we introduce
sound features. We consider our dataset to be a challenging one given that our cluttered
indoor scenes do not show much variation in texture or colour between different objects (as
shown in Fig. 1), making them difficult to recognise. We confirm this by testing the CRF
implementation of [20] (which has pairwise terms between pixels in an 8-neighbourhood) 2

2Source code available at: http://www.inf.ethz.ch/personal/ladickyl/ALE.zip
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Figurek5:k(a)kTheknoisykpredictionskmadekbykthekper-pixelkunarykclassifiers.kThekindicatedk

regionskinkthekinputkimagekshowktheklocationskwhereksoundkinformationkiskpresent.k(b) Thek

outputk ofk thek CRFk usingk onlyk visualk features.k (c)k Thek materialk unariesk fromk thek soundk

classifierkincreaseskthekprobabilitykofkthekdemarcatedkpixelsktakingktheklabelsk,plastic,kandk

,ceramic,k suchk thatk itk isk enoughk tok propogatek throughoutk thek keyboard,k telephonek andk

mug.k Notek thatk long-rangek interactionsk presentk ink ourk densely-connecedk CRFk modelk

whichk enablesk thek monitork andk upperk keyboardk tok takek onk materialk labelsk evenk thoughk

theykhaveknoksoundkinformationkinkthiskimage.k(d)kFinally,kthekjointkoptimisationkbetweenk

materialkandkobjectklabelskresultskinkthekkeyboardkandkmugktakingkthekcorrectklabel.kThek

telephonekisknowkmisclassifiedkask,mouse,,kbutkbothkthesekobjectskarekmadekofkplastic.k(e) 

Note,k limitationskonkourk3Dkreconstructionkconstrainkthekresolutionkofk theklabelling.kThek

black,k,void,,klabelskarekignoredkwhenkcomputingkperformancekmetrics.k

which has a similarly low accuracy when using the same unaries. However, our mean-field
based inference is significantly faster.

Table 2: Results of semantic segmentation of object and material labels
Weighted Mean IoU Mean IoU Accuracy(%) Mean F1-Score
Object Material Object Material Object Material Object Material

Visual features only (unary) 31.51 38.97 10.16 16.71 49.89 58.46 15.54 25.00
Visual features only (unary and pairwise) [20] 32.54 40.20 10.69 17.09 52.19 60.81 16.06 25.28
Visual features only (unary and pairwise) 32.64 41.06 10.88 17.65 52.84 62.46 16.15 25.91

Audiovisual features (unary and pairwise) – 44.54 – 21.83 – 66.45 – 31.49

Visual features only, joint inference 34.40 41.06 11.15 17.65 53.63 62.46 17.19 25.91
Audiovisual features, joint inference 36.79 44.54 12.80 21.83 55.65 66.45 19.59 31.49

The addition of auditory features. Adding sound features when classifying materials im-
proves the weighted mean intersection-over-union (IoU) by 3.5%. The F1-score and accu-
racy increase by 5.58% and 4% respectively. At this stage, object-classification performance
is unchanged, since auditory features are used for material identification only. We have seen
from Table 1 that the unary sound classifier predicts a number of material categories with
high accuracy. Moreover, as shown in Fig. 5c, our random-field model propagates the unary
sound classifier’s prediction throughout the rest of the object. The pairwise potentials, which
encourage nearby pixels of similar appearance to take on the same label, and unary potentials
from the visual features, govern this propagation.

Joint optimisation of object and material labels. Next, we use the improved material
labelling to also improve the object labelling. This is achieved through the joint potential
terms in Equation 2. As shown in Fig. 5d, we use the fact that object and material classes
are correlated in order to impose consistency between these labels (for example, mugs are
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made of ceramic, but not of gypsum). Through cross-validation, we found that the best
results were achieved when the cost from object-to-material was very low (wom = 0.05 and
wmo = 3 from Equation 6). This was because our material predictions are stronger than our
object ones, and hence, the object nodes are more likely to send incorrect information to
the material nodes in the CRF. Joint optimisation produces better object labelling even when
we do not use any sound features to improve material labelling as shown in the penultimate
row of our table. However, augmenting our material classification with auditory features and
then performing joint inference produces the best results. As Fig. 5 shows, objects which are
made of ceramic, plastic or wood show particular improvement, since these are the material
categories that the unary sound classifier was most accurate at predicting from Table 1.

6 Conclusions and Future Work
In this paper, we have demonstrated how complementary sensory modalities can be used to
improve classification performance. In particular, we have shown that by using a Conditional
Random Field model, we can use sparse auditory information effectively to augment existing
visual data and help better predict the material properties of objects. We have further shown
that by exploiting the correlation between material and object classes, it is possible to use
these better material predictions to achieve better object category classification.

To facilitate our experiments in this paper, we have produced a new RGB-D dataset that
provides dense per-pixel object and material labels for a variety of indoor scenes that contain
minimal contrast or texture. Our dataset also provides auditory data obtained from striking
various objects in the scene at sparse locations. We hope that our challenging dataset will
encourage future work in audio-visual semantic segmentation.

In terms of further work, we believe that investigating the use of other complementary
sensory modalities in addition to sound could yield further improvements in classification
performance. Moreover, we aim to implement our system on a mobile robot which will use
its robotic arm to tap objects, record the resulting sound, and learn more about its environ-
ment.
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