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Supplementary Material : Rauch-Tung-Striebel
Smoother on Lie groups

In this supplementary material, we provide the mathematical derivations of a generalization of the Rauch-
Tung-Striebel smoother (RTS), also known as Extended Kalman Smoother, to the case where the state evolves
on a matrix Lie group. Our solution relies on the link between the Gauss-Newton algorithm on Lie groups
and the formalism of the concentrated Gaussian distribution on Lie groups. Our formalism yields closed-form
equations for the smoothing of parameters produced by the Extended Kalman Filter on Lie groups (LG-EKF).

Please read section 4 in the submitted paper before reading this note.

I. Useful property

log∨G (exp∧G (a) exp∧G (b)) = b+ ϕG (b) a+O
(
‖a‖2

)
(1)

where

ϕG (b) =
∞∑
n=0

BnadG (b)n

n! = Idp + 1
2adG (b) + · · · (2)

and adG (b) a =
[
[b]∧G [a]∧G − [a]∧G [b]∧G

]∨
G
. The Bn are the Bernoulli numbers. ϕG (·) is the inverse of the left

Jacobian of G that we denote ΦG (·) (see supplementary material on LG-RBPS).

II. Derivation of the LG-RTS
A. Problem

p (xt+1, xt|y1:T ) = p (xt|xt+1, y1:T ) p (xt+1|y1:T )
= p (xt|xt+1, y1:t) p (xt+1|y1:T )

= p (xt+1, xt|y1:t)
p (xt+1|y1:t)

p (xt+1|y1:T ) (3)

where

p (xt+1, xt|y1:t) = NG
([

xt+1
xt

]
;
[
µt+1|t
µt|t

]
, (4)

Σ =
[
Qt + FtPt|tF

T
t FtPt|t

Pt|tF
T
t Pt|t

])

p (xt+1|y1:t) = NG
(
xt+1;µt+1|t, Pt+1|t = Qt + FtPt|tF

T
t

)
(5)

p (xt+1|y1:T ) = NG
(
xt+1;µt+1|T , Pt+1|T

)
(6)

In equations (4) and (5), the values of the parameters come from the propagation step of the LG-EKF while
in eq.(6) they come from the LG-RTS smoother at time t+ 1.

Under the concentrated Gaussian assumption, the logarithm of (3) is :

l (xt+1, xt) =

∥∥∥∥∥∥∥∥∥∥∥∥


log∨G

(
xt+1µ

−1
t+1|t

)
log∨G

(
xtµ
−1
t|t

)
log∨G

(
xt+1µ

−1
t+1|t

)
log∨G

(
xt+1µ

−1
t+1|T

)



∥∥∥∥∥∥∥∥∥∥∥∥

2

E

(7)
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where
E = diag

(
Σ,−

(
Qt + FtPt|tF

T
t

)
, Pt+1|T

)
(8)

and ‖·‖2
· is the Mahalanobis distance.

We wish to find the minimum of (7), i.e we wish to estimate {x̂t+1, x̂t} = argmin
xt+1,xt

{l (xt+1, xt)}. To do so,
we propose to apply a Gauss-Newton algorithm.

B. Application of a Gauss-Newton algorithm
First, we linearise the term inside the norm of (7) in δ

l+1/l
t+1 = 0 and δ

l+1/l
t = 0 where we defined xt =

exp∧G

(
δ
l+1/l
t

)
x

(l)
t and xt+1 = exp∧G

(
δ
l+1/l
t+1

)
x

(l)
t+1. To do so, we define :

δl,tt+1 = log∨G

(
x

(l)
t+1µ

−1
t+1|t

)
(9)

δl,tt = log∨G

(
x

(l)
t µ
−1
t|t

)
(10)

δl,Tt+1 = log∨G

(
x

(l)
t+1µ

−1
t+1|T

)
(11)

Using (1) we obtain a new problem to minimize :

argmin
δ

l+1/l
t+1 ,δ

l+1/l
t


∥∥∥∥∥el + Jl

[
δ
l+1/l
t+1
δ
l+1/l
t

]∥∥∥∥∥
2

E

 (12)

where

Jl =


ϕG
(
δl,tt+1

)
0

0 ϕG
(
δl,tt

)
ϕG
(
δl,tt+1

)
0

ϕG
(
δl,Tt+1

)
0

 and el =


δl,tt+1
δl,tt
δl,tt+1
δl,Tt+1

 (13)

We also define : ϕG
(
δl,tt+1

)
=M, ϕG

(
δl,tt

)
= S and L = ϕG

(
δl,Tt+1

)
.

Then, the solution of (12) is :

[
δ
l+1/l
t+1
δ
l+1/l
t

]
= −

(
JTl E

−1Jl
)−1

JTl E
−1


δl,tt+1
δl,tt
δl,tt+1
δl,Tt+1

 (14)

where

E−1=diag


 Q−1

t −Q−1
t Ft

−F T
t Q

−1
t

F T
t Q

−1
t Ft

+P−1
t|t

,−
(
FtPt|tF

T
t

+Qt)−1 , P−1
t+1|T

 (15)

1) Derivation of
(
JTl E

−1Jl
)−1: (

JTl E
−1Jl

)−1
=
[

A′ B′

B′T D′

]
(16)

It is possible to prove that :
A′ = L−1Pt+1|TL−T (17)

D′ = S−1
(
Pt|t+

Lt
(
ML−1Pt+1|TL−TMT − Pt+1|t

)
LTt

)
S−T (18)

and
B′ = L−1Pt+1|TL−TMTLTt S−T (19)

where Lt = Pt|tF
T
t

(
Qt + FtPt|tF

T
t

)−1
.
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2) Derivation of δl+1/l
t+1 : If x(l)

t+1 = µt+1|T then from (11), δl,Tt+1 = 0 and consequently L = Id.
From (14) and using (13), (15) and (16) we obtain :

δ
l+1/l
t+1 = −Pt+1|TMT(((

Q−1
t −

(
Qt + FtPt|tF

T
t

)−1
)
− LTt F T

t Q
−1
t

)
δl,tt+1

+
(
−Q−1

t Ft + LTt

(
F T
t Q

−1
t Ft + P−1

t|t

))
δl,tt

)
(20)

It is possible to prove that the term in δl,tt+1 is null as well as the term in δl,tt . Thus, by initializing x(0)
t+1 =

µt+1|T , we proved :
δ
l+1/l
t+1 = 0 (21)

for any l. Consequently : δl,Tt+1 = 0 and L = Id.
3) Derivation of δl+1/l

t : From (14) and using (13), (15) and (16) as well as δl,Tt+1 = 0 and L = Id, we obtain :

δ
l+1/l
t =−S−1

{(
LtMPt+1|TMT

(
Q−1
t −

(
Qt + FtPt|tF

T
t

)−1
)

−
(
Pt|t + Lt

(
MPt+1|TMT − Pt+1|t

)
LTt

)
F T
t Q

−1
t

)
δl,tt+1

+
((
Pt|t+Lt

(
MPt+1|TMT−Pt+1|t

)
LTt

)(
F T
t Q

−1
t Ft + P−1

t|t

)
−LtMPt+1|TMTQ−1

t Ft
)
δl,tt

}
(22)

It is possible to prove that the term in δl,tt equals −S−1δl,tt while the term in δl,tt+1 equals S−1Ltδ
l,t
t+1. Thus

we have :
δ
l+1/l
t = S−1

(
Ltδ

l,t
t+1 − δ

l,t
t

)
(23)

C. Algorithm
By initializing x(0)

t+1 = µt+1|T , we obtained (eq.(21) and eq.(23)) :[
δ
l+1/l
t+1
δ
l+1/l
t

]
=
[

0
S−1

(
Ltδ

l,t
t+1 − δ

l,t
t

) ] (24)

Thus :

δl+1,t
t = log∨G

(
x

(l+1)
t µ−1

t|t

)
' δl,tt + Sδl+1/l

t = Ltδ
l,t
t+1 (25)

Consequently, we have the following update equation :

x
(l+1)
t = exp∧G

(
δl+1,t
t

)
µt|t = exp∧G

(
Ltδ

l,t
t+1

)
µt|t

= exp∧G

(
Ltlog

∨
G

(
µt+1|Tµ

−1
t+1|t

))
µt|t (26)

The solution of our problem is reached after a single iteration. Thus : x̂t = exp∧G

(
Ltlog

∨
G

(
µt+1|Tµ

−1
t+1|t

))
µt|t.

Then we set µt|T = x̂t and approximate the covariance matrix with D′ :

Pt|T = S−1
(
Pt|t + Lt

(
MPt+1|TMT − Pt+1|t

)
LTt

)
S−T (27)

Remark : x̂t+1 = µt+1|T consequently A′ equals Pt+1|T as expected.
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