Supplementary Material : Rauch-Tung-Striebel
Smoother on Lie groups

In this supplementary material, we provide the mathematical derivations of a generalization of the Rauch-
Tung-Striebel smoother (RTS), also known as Extended Kalman Smoother, to the case where the state evolves
on a matrix Lie group. Our solution relies on the link between the Gauss-Newton algorithm on Lie groups
and the formalism of the concentrated Gaussian distribution on Lie groups. Our formalism yields closed-form
equations for the smoothing of parameters produced by the Extended Kalman Filter on Lie groups (LG-EKF).

Please read section 4 in the submitted paper before reading this note.

I. USEFUL PROPERTY
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II. DERIVATION OF THE LG-RTS

A. Problem
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In equations (4) and (5), the values of the parameters come from the propagation step of the LG-EKF while
in eq.(6) they come from the LG-RTS smoother at time ¢ 4 1.
Under the concentrated Gaussian assumption, the logarithm of (3) is :
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where

¢ = diag (3, (Qi + FPyF ), Priayr) (8)

and ||-||? is the Mahalanobis distance.
We wish to find the minimum of (7), i.e we wish to estimate {#;1,%:} = argmin {l (2441, 2¢)}. To do so,
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we propose to apply a Gauss-Newton algorithm.
B. Application of a Gauss-Newton algorithm
First, we linearise the term inside the norm of (7) in 5,{1}/ "= 0 and 5§+1/ " = 0 where we defined z; =
exp (5;“”) xgl) and x4 = expg ((ﬁi}/l) xﬁzl To do so, we define :
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Using (1) we obtain a new problem to minimize :
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2) Derivation of 5;1}/1: If 331521 = fig41)7 then from (11), (ﬁfl = 0 and consequently £ = Id.

From (14) and using (13), (15) and (16) we obtain :
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It is possible to prove that the term in 5ii1 is null as well as the term in (ﬁ’t. Thus, by initializing 935921 =

Hiy1T, We proved :
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for any [. Consequently : 5ifl =0and L = Id.
3) Derivation of 5i+l/l: From (14) and using (13), (15) and (16) as well as (5i’+T1 =0 and £ = Id, we obtain :
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It is possible to prove that the term in 6" equals —S _15?’5 while the term in 5ﬁ’fr1 equals § _1Lt5ii1- Thus
we have :
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C. Algorithm
By initializing x,§0+)1 = ftg41)7, We obtained (eq.(21) and eq.(23)) :
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Thus :
i = log (i) = 6t + 50, = L,y (25)
Consequently, we have the following update equation :
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The solution of our problem is reached after a single iteration. Thus : #; = expg: (Ltlogé (,Ut+1\TMt_+11| t)) Mgt
Then we set pyr = & and approximate the covariance matrix with D'
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Remark : Z441 = jt41)7 consequently A’ equals Py as expected.
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