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Abstract

This paper deals with the trajectory estimation of a wearable camera evolving in an
indoor environment where a database of images has been previously annotated with map
coordinates. The difficulty of this problem resides in the fact that: i) hand-held objects
are frequently interposed between the camera and the environment during daily living
activities; ii) strong motion blur and differences in illumination occur; iii) the environ-
ment changes between the images of the database and the video frames to localize, and
the viewpoints can be significantly different. The contribution of this paper is threefold:
1) We formulate the localization problem as a target tracking problem on the Lie group
of camera motions SE (3), where the measurements are map coordinates obtained by
applying a Content Based Image Retrieval algorithm to the video frames. 2) In order
to solve this problem, we derive a novel Rao-Blackwellized particle smoother on Lie
groups, which builds upon the recently proposed Extended Kalman Filter on Lie groups
and the Rauch-Tung-Striebel Smoother on Lie groups that we also derive in this paper.
3) To take into account the topology of the environment, we propose to introduce vir-
tual measurements that guide the particles and prevent them from crossing walls. We
demonstrate, on several challenging video sequences, where the person wearing the cam-
era performs daily living activities, that the proposed method is able to efficiently deal
with outlier measurements and achieves a sub-meter level accuracy while the state of the
art algorithms lack in robustness.

1 Introduction
Localizing a monocular camera evolving in an indoor environment where a database of im-
ages has been previously annotated with map coordinates, also known as Visual Indoor Lo-
calization (VIL), is a challenging problem. As a matter of fact, a wide range of applications,
such as location based services, autonomous mobile robots or recognition of instrumental
activities of daily living [14], require a meter level accuracy as well as the knowledge of
the orientation [16]. Compared with other technologies such as Radio-frequency identifica-
tion or WiFi radios, a monocular wearable camera is an informative low-cost passive sensor
that does not require any modification of the environment. Thus being able to robustly and
accurately estimate both the position and the orientation of a camera is essential.
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(a) Video frame examples of
a person performing daily liv-
ing activities. Hand-held ob-
jects are frequently interposed
between the camera and the en-
vironment.

(b) Illustration of a database of images of an apartment annotated with map coor-
dinates. This database of 6000 images was generated automatically from a train-
ing video sequence as explained in section 3.1. The blue line corresponds to the
2D positions of all the images of the database. Note that each image is actually
annotated with a 6-dof pose (3D position and 3D orientation) but only the 3D
position projected onto the plan of the apartment is presented in this figure.

Figure 1: (Best seen in colors) Left: Examples of video frames to localize. Right: Illustration
of the database

1.1 Context and Objectives
In this paper, we are interested in VIL for challenging video sequences coming from a single
monocular camera where the person wearing the camera performs daily living activities (see
Fig.1(a)). The difficulty of this problem resides in the fact that: i) hand-held objects are
frequently interposed between the camera and the environment; ii) strong motion blur and
differences in illumination occur; iii) the environment changes between the images of the
database and the video frames to localize, and the viewpoints can be significantly different.

We wish to develop a method that:
- relies only on the images coming from the wearable camera, i.e no other sensor such as
Inertial Measurement Units should be used
- estimates the camera position with a sub-meter level accuracy as well as its orientation
- is consistent with the topology of the environment, i.e the camera trajectory should not
cross walls
- is able to detect when the data is not sufficient to disambiguate the situation, i.e when the
posterior distribution of the camera trajectory is multi-modal and/or too dispersed.

1.2 Contributions and Outline of the paper
In this context, we propose a novel VIL framework which is able to satisfy the previous
technical specifications. The contribution of this paper is threefold:
1. We formulate the localization problem as a target tracking problem on the Lie group

of camera motions SE (3), where the measurements are map coordinates obtained by
applying a Content Based Image Retrieval (CBIR) algorithm to the video frames.
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2. In order to solve this problem, we derive a novel Rao-Blackwellized particle smoother
on Lie groups, which builds upon the recently proposed Extended Kalman Filter on Lie
groups [5] and the Rauch-Tung-Striebel Smoother on Lie groups that we also derive in
this paper.

3. To take into account the topology of the environment, we propose to introduce virtual
measurements that guide the particles and prevent them from crossing walls.

The rest of the paper is organized as follows: section 2 deals with the related work. Our VIL
framework is presented in section 3. The formulation of the target tracking problem as well
as the proposed Rao-Blackwellized particle smoother on Lie groups are described in section
4. In section 5, the limitations of the proposed approach are discussed, while in section 6,
our VIL framework is evaluated experimentally. Finally, conclusions and future research
directions are provided in section 7.

2 Related Work
There exist several ways to tackle the VIL problem.

First of all, it can be seen as a monocular Visual Simultaneous Localization and Mapping
(VSLAM) problem with the additional knowledge of a database of images that are annotated
with map coordinates. Thus, recent advances in monocular VSLAM such as [11] or [10]
could be applied.

Secondly, from the database of images, a 3D point cloud of the environment can be
reconstructed using a Structure from Motion (SfM) method such as [17] or [12]. Then, using
this point cloud, it is possible to localize the video frames as in [25], [24], [20] or [18].

Finally, the approaches developed in the context of CBIR [7, 21] and appearance-only
SLAM [8] are able to efficiently retrieve the nearest neighbor of an image in the database of
annotated images. Consequently, the map coordinates of a retrieved image can be interpreted
as the location of the query video frame.

All the previously cited approaches, are dedicated to “clean” data and fail when they are
applied to the difficult problem of localizing a wearable camera during daily living activi-
ties (see section 1.1). Indeed, monocular VSLAM approaches are still fragile and require
specific conditions, such as large camera translations, brightness constancy and a static en-
vironment, that are not met in our context. 3D-based localization algorithms assume that the
environment did not change between the images of the database and the test videos. This
assumption is usually verified for outdoor environments, but it is far from being true in an
occupied apartment (see Fig.1(a) and 2). Image retrieval algorithms frequently output wrong
results because of viewpoint changes and hand-held objects that are interposed between the
camera and the environment (see Fig.2).

In this paper, we propose a method that overcomes the lack of robustness in the state
of the art approaches. As a consequence, our method is able to deal with the VIL problem
in the context of daily living activities. It consists in first employing a CBIR algorithm
and then using the map coordinates of the retrieved images as measurements in a target
tracking problem on the Lie group of camera motions SE (3). The erroneous measurements
are filtered by leveraging the fact that the camera:

- should have a smooth trajectory
- evolves in a constrained indoor environment and thus cannot cross walls.
The approaches described in [15], [22] and [27] are closely related to our own. For

instance, [15] employs a Kalman filter while [22] and [27] use particle filters to estimate a
smooth camera trajectory from the result of a CBIR algorithm. However, all these methods
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Figure 2: (Best seen in colors) Illustration of image retrieval results. Top row: Examples of
video frames to localize. Bottom row: Nearest neighbor retrieved with a CBIR algorithm
similar to [7]. Left: Examples of successfully retrieved images. Right: examples of images
where the CBIR algorithm failed.

are assisted with other sensors, perform the trajectory estimation in a 2D plan and do not
exploit the fact that the environment is constrained.

Contrary to these approaches, our method relies only on the images. In order to ro-
bustly estimate the 6-dof camera trajectory, we propose a novel Rao-Blackwellized particle
smoother on Lie groups combined with virtual measurements that guide the particles and
prevent them from crossing walls.

Also, in the field of place recognition, approaches such as [9] proposed to apply ma-
chine learning algorithms to learn places. These approaches are robust, however they cannot
provide the camera position with a sub-meter level accuracy nor its orientation.

3 Proposed Visual Indoor Localization Framework
The proposed VIL framework consists in 2 modules: a CBIR algorithm followed by our
novel Rao-Blackwellized Particle Smoother on Lie groups. The image retrieval algorithm
that we employ is briefly presented in this section as well as the way we automatically build a
database of images of an indoor environment, while the proposed Rao-Blackwellized Particle
Smoother on Lie groups is described in the next section.

3.1 Automatic database creation and annotation
In order to apply a VIL algorithm, a database of images representing the indoor environment
has to be created and annotated with map coordinates. While this step is usually tedious,
we propose an (almost) automatic way to do it. First, a “clean” training video of the en-
vironment, as complete as possible, is taken. Then a monocular VSLAM approach similar
to [11] is applied. Finally, the estimated camera trajectory is manually aligned with the 2D
plan of the building. In this way, each frame of the training sequence has been automatically
annotated with a 3D position and a 3D orientation. An example of database automatically
created from a video of 20 minutes is presented Fig.1(b).

3.2 Content Based Image Retrieval Algorithm
The CBIR algorithm that we employ shares similarities with [20] and [7], yet different. Let
us now describe this algorithm for one video frame. First of all, a 32× 32 miniature of the
frame is created [26] and compared to the miniatures of the database images using a sum of
absolute distances. At the end of this stage, only the 100 closest database images are kept.
Secondly, SURF points of interest [3] are detected and matched to the SURF descriptors of
the database images using a kd-tree. At the end of this stage, only the 5 database images
having the highest number of matches are kept. Finally, only the database images having at
least 15 matches are kept. In order to reduce the computational cost of this step, the CBIR
algorithm is only applied to one video frame per second. Examples of results produced by
this algorithm are presented in Fig.2 (only the “nearest neighbor”, i.e the database image
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with the highest number of matches, is presented). This CBIR algorithm allows to efficiently
find the nearest neighbors of a video frame in the annotated database of images.

4 A target tracking problem on SE (3)
After having found the nearest neighbors of the video frames in the annotated database of im-
ages, we wish to estimate the camera trajectory. First, we formulate this estimation problem
as a target tracking problem on the Lie group of camera motions SE (3) where the measure-
ments are the map coordinates (3D orientation and 3D position) of the retrieved images. In
order to take into account the topology of the environment, we propose to introduce virtual
measurements that prevent the estimated trajectory from crossing walls. Then, in order to
solve this problem, we derive a novel Rao-Blackwellized particle smoother on Lie groups.

4.1 Formulation of the problem
The map coordinates, obtained by applying a CBIR algorithm to the video frames, can be
interpreted as target measurements coming from a target detector. Since the map coordinates
take their values on the Lie group of camera motions SE (3) (3D position and 3D orientation),
we propose to formulate this estimation problem as a target tracking problem on SE (3).

4.1.1 Preliminaries on the geometry of camera poses: the matrix Lie group SE (3)

A camera pose Cig =

[
Rig Tig

01×3 1

]
⊂R4×4 is a transformation matrix where Rig is a 3D ro-

tation matrix and Tig is a 3D vector. Applying Cig to a 3D point xg ∈R3 defined in a reference

frame (RF) g allows to transform xg from RF g to RF i, i.e
[

xi

1

]
=Cig

[
xg

1

]
. Two poses

C ji and Cig can be composed using matrix multiplication to obtain another pose C jg =C jiCig.
Inverting a pose matrix Cig produces the inverse transformation, i.e C−1

ig =Cgi. Consequently
multiplying a transformation with its inverse produces the identity matrix: CigCgi = Id. From
a mathematical point of view, the set of camera poses form the 6-dimensional matrix Lie
group SE (3) [6]. The matrix exponential expm and matrix logarithm logm establish a lo-
cal diffeomorphism between an open neighborhood of Id in SE (3) and an open neighbor-
hood of 04×4 in the tangent space at the identity, called the Lie Algebra se(3). se(3) is a
6-dimensional vector space. We denote the linear isomorphism between se(3) and R6 as
follows: [·]∨SE(3) : se(3)→ R6 and [·]∧SE(3) : R6 → se(3). We also introduce the following

notations: exp∧SE(3) (·) = expm
(
[·]∧SE(3)

)
and log∨SE(3) (·) = [logm(·)]∨SE(3). Finally, the distri-

bution of a random variable Cig ∈ SE (3) is called a (right) concentrated Gaussian distribution
on SE (3) [1] of “mean” µig and “covariance” P denoted NSE(3) (Cig; µig,P) if:

Cig = exp∧SE(3)
(
ε

i
ig
)

µig where ε
i
ig ∼NR6

(
ε

i
ig;06×1,P

)
(1)

Such a distribution provides a meaningful covariance representation and allows us to quantify
the uncertainty of the camera poses.

4.1.2 Propagation model

First, we wish to take advantage of the fact that the camera should have a smooth trajectory.
We propose to employ a white noise acceleration model of the form:

Ct+1 = exp∧SE(3) (vt∆t)Ct and vt+1 = vt +nt (2)
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where Ct ∈ SE (3) is the camera pose at time t. More precisely, Ct is defined as the trans-
formation matrix Cit g where g is the RF of the map and it is the RF of the camera at time t.
vt ∈ R6 corresponds to its speed, nt ∼NR6 (nt ;06×1,Rt) is a white Gaussian noise and ∆t is
the time interval between two consecutive frames. Consequently, the state Xt ∈ SE (3)×R6

that we wish to estimate is the concatenation of the camera pose Ct and its speed vt .

4.1.3 Likelihood, Virtual Measurements and Latent variables

We wish to define a likelihood involving the map coordinates of the images retrieved by
the CBIR algorithm. However, the CBIR algorithm might have failed and retrieved wrong
images (see Fig.2). Thus, we need to define a robust likelihood that allows to discard the
retrieved map coordinates when they are erroneous. Also, when the CBIR algorithm does
not manage to retrieve any image in the database, nothing prevents the camera pose neither
from “leaving” the map, nor from crossing walls.

In order to answer these two problems, we first define the measurement variable yt that
concatenates:
- all the N map coordinates of the database images that we call Virtual Measurements
- the NCBIR map coordinates (maximum NCBIR = 5, see section 3.2) of the retrieved images
at time t .

yt = [yt (1) ,yt (2) , ...,yt (N)︸ ︷︷ ︸
Virtual Measurements

,yt (N +1) , ...,yt (N +NCBIR)︸ ︷︷ ︸
CBIR output

] (3)

Secondly, we introduce a latent discrete variable st that acts as a selector among the com-
ponents of yt such that yt (st = i) selects the ith component in yt . Let us assume that, at time
t, the CBIR algorithm retrieved NCBIR images in the database. Then, st ∈ {1, ...,N +NCBIR}
and yt (st) corresponds to the st th component of yt . The likelihood we consider is defined as:

p(yt |Ct ,st = i) =
N+NCBIR

∏
j=1

p(yt ( j) |Ct ,st = i) ∝N R
SE(3) (yt (i) ;Ct ,Qt,i) (4)

where Qt,i = QV M if i ≤ N and Qt,i = QCBIR otherwise. QV M and QCBIR are covariance
matrices to be defined.

By introducing both virtual measurements and latent variables, the system is now able
to select a virtual measurement instead of a true measurement when the CBIR algorithm
retrieves wrong images. Moreover, when the CBIR algorithm does not retrieve any image,
the system still selects a virtual measurement, which prevents the estimate camera pose from
crossing walls (see Fig.3).

The probability transition of st is defined as p(st |st−1) = p(st). In practice,
p(st = i)� p(st = j) for i ≤ N and j > N in order to encourage the system to “use” the
map coordinates retrieved by the CBIR algorithm as much as possible.

4.2 Rao-Blackwellized particle smoother on Lie groups

In order to satisfy the technical specifications described in section 1.1, we are interested in
approximating the posterior distribution p(X0:T ,s1:T |y1:T )

1. To do so, we propose to derive
a Rao-Blackwellized particle smoother on Lie groups (LG-RBPS) that samples the discrete
latent variables st but takes advantage of the properties of (2) and (4) to marginalize out Xt .

1The notation p(X0:T ,s1:T |y1:T ) stands for p(X0,X1, ...,XT ,s1,s2, ...,sT |y1,y2, ...,yT )
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(a) 20 samples of each vir-
tual measurement are plot-
ted. It can be interpreted
as all the places where the
camera is “allowed” to go.

(b) t=0.3: In this example,
all the particles are initial-
ized at the same position
and orientation with null
speed

(c) t=3 sec: The parti-
cles begin to spread inside
rooms, through doors and
along the corridors.

(d) t=6 sec: The particles
have now reached all the
rooms.

Figure 3: Illustration of the diffusion of the particles using the virtual measurements. Only
the projection of the 3D position (base of the arrow) and 3D orientation (direction of the
arrow) onto the plan of the apartment is presented in this figure.

4.2.1 Related work
In the field of SLAM, several works proposed Rao-Blackwellized Particle Smoothers (RBPS)
[4]. Nevertheless these approaches are “classical” RBPS and cannot be considered as RBPS
on Lie groups because the Lie group part of the state is sampled and not marginalized out.
Moreover, they do not deal with measurements evolving on a Lie group. In [19], a Rao-
Blackwellized Particle Filter (RBPF) able to deal with measurements on a Lie group is pro-
posed. However, once again, the Lie group part of the state is sampled.

In [2], an invariant Rao-Blackwellized Particle Filter (RBPF) was recently proposed. It
is dedicated to systems possessing invariance properties once some of the state variables are
known.

Contrary to these approaches, we propose an LG-RBPS algorithm able to deal with mea-
surements evolving on a Lie group and to marginalize out the Lie group part of the state
completely. It builds upon the recently proposed Extended Kalman Filter on Lie groups
(LG-EKF) [5] and the Rauch-Tung-Striebel Smoother on Lie groups (LG-RTS) that we also
derive in this paper. Our approach can be seen as a generalization of [13] to Lie groups.

4.2.2 Algorithm
Mathematical Derivations Due to the lack of space, the mathematical derivations of
both the proposed Rao-Blackwellized particle smoother on Lie groups and the Rauch-Tung-
Striebel Smoother on Lie groups are provided as supplementary material. However, the
pseudo-code of the LG-RBPS is presented in Alg 1 and a detailed explanation is provided
below.

Explanation The LG-RBPS presented in Alg 1, which allows to estimate the camera tra-
jectory, consists in two main steps: filtering and smoothing.

In the filtering part, Np weighted trajectories (or particles) are computed. A trajectory is
parametrized by its mean µ and its covariance P as well as a weight w at each time instant.
We now explain how these trajectories are obtained. The mean of the trajectory is initialized
by choosing randomly a camera pose among the map coordinates with a null speed. The
covariance of the trajectory is initialized with a predefined covariance matrix P0 and the
initial value of w is 1

Np
. Then for each time instant t, from t = 1 (first video frame) to t = T

(last video frame), the algorithm operates as follows:
1. LG-EKF propagation: the mean and the covariance of the trajectory are propagated using

the motion model (2)
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2. Optimal Sampling: the likelihood of each measurement available at time instant t given
the propagated trajectory is computed and used to draw one of the measurements

3. LG-EKF update: the mean and the covariance of the propagated trajectory are corrected
(using the measurement model (4)) by taking into account the information coming from
the selected measurement

4. the weight of the trajectory is updated by summing all the likelihoods from step 2
After having applied these four steps to each trajectory, the weights are normalized and
unlikely trajectories are replaced with more likely ones during the resampling stage.

The trajectories produced by the filtering stage might contain “jumps” because of the re-
sampling stage. More importantly, at each time instant, only the past measurements (summa-
rized by the covariance of the trajectory) are used to select the next measurement, while the
future measurements are not. However, being able to take into account the future measure-
ments usually significantly improves the performances of an algorithm especially in cases
where past measurements are not informative. This is the purpose of the smoothing stage.

In the smoothing part, the algorithm runs backward, that is from t = T to t = 1, and
draws Np samples from the full posterior distribution p(X0:T ,s1:T |y1:T ). For each sample, the
algorithm starts from one of the (weighted) trajectories produced by the filtering stage and
recursively (involving the LG-RTS smoother) tries to find a likely path among the possible
trajectories produced by the filtering stage.

Finally, for each time instant t, the centroid and the covariance of the values of the sam-
ples (at time instant t) are computed.

The centroids are taken as estimate for the camera trajectory, while the covariances can
be employed to detect when the posterior distribution of the camera trajectory is multi-modal
and/or dispersed (see video provided as supplementary material).

5 Limitations
The VIL framework proposed in this paper has several limitations. First of all, the database
of the environment has to be as complete as possible. Actually, if the camera goes in a place
that does not correspond to any image of the database, then the CBIR algorithm will not
retrieve any image and the particles will diffuse in the environment. In practice, the proposed
automatic database creation framework (see section 3.1) allows to create large and complete
databases very efficiently. Secondly, the introduction of virtual measurements prevents the
particles from crossing walls only “softly”. In theory, a particle with a high velocity might
cross a wall and reach another virtual measurement. In practice, we constrain the velocity
below a given physically realistic threshold and use a small time interval ∆t to prevent such
“jumps”.

6 Experiments
In this section, the proposed VIL framework is evaluated experimentally on several challeng-
ing video sequences where the person wearing the camera performs daily living activities.

For all these experiments, the parameters of our VIL framework have been optimized
by hand on one video once and for all. We used: QV M = diag

(
π1×3,(5e−3)1×3

)
, QCBIR =

diag
(
0.11×3,(5e−2)1×3

)
, Rt = diag

(
(5e−3)1×6

)
, P0 = diag

(
0.51×3,(5e−2)1×3 ,11×6

)
, Np =

100 and p(st = i) = 0.1 for i > N. In practice, when updating the weights, if s(i)t corresponds
to selecting a virtual measurement, then p

(
yt |s(i)0:t−1,y1:t−1

)
is replaced by a constant. This

allows not to modify the weights of the particles when the CBIR algorithm does not retrieve
any image. Also, each 15∆t, we use Rt = P0 to provide more variability to the particles.
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Algorithm 1 LG-RBPS
Inputs: Np (number of particles), P0 (initial covariance), T (number of time steps), {yt}t=1,...,T (mea-
surements), QV M (virtual measurement covariance), QCBIR (true measurement covariance), ∆t (time
interval), Rt (propagation covariances),{p(st)}t=1,...,T (discrete probability distributions)

Outputs: {µt}t=1,...,T (estimated trajectory), {Pt}t=1,...,T (covariance of the estimated trajectory)

Notations: µ
(i)
ta|tb and P(i)

ta|tb correspond to the mean and the covariance of the trajectory associated to
particle i, at time ta, having observed {yt}t=1,...,tb

Filtering
• For i = 1,2, ...,Np

◦ Initialize µ
(i)
0|0 by choosing randomly a map coor-

dinate in the database with a null speed
◦ P(i)

0|0 = P0 and w(i)
0 = 1

Np

• EndFor
• For t = 1,2, ...,T
◦ For i = 1,2, ...,Np

– LG-EKF propagation: Propagate µ
(i)
t−1|t−1 and

P(i)
t−1|t−1 to get µ

(i)
t|t−1 and P(i)

t|t−1 using Rt and ∆t

– Optimal Sampling: Draw s(i)t using µ
(i)
t|t−1,

P(i)
t|t−1, yt and p(st) and evaluate p

(
yt |s

(i)
0:t−1,y1:t−1

)
– LG-EKF update: Update µ

(i)
t|t−1 and P(i)

t|t−1 to get

µ
(i)
t|t and P(i)

t|t using yt

(
s(i)t

)
and QCBIR or QV M

– Update weight: w(i)
t = w(i)

t−1 p
(

yt |s
(i)
0:t−1,y1:t−1

)
◦ EndFor
◦ Normalize weights and Resample particles
• EndFor

Smoothing
• For i = 1,2, ...,Np

◦ Set s̃T = s( j)
T with probability w( j)

T

◦ Set µ̃T |T = µ
( j)
T |T , P̃T |T = P( j)

T |T

◦ Draw x(i)T ∼NSE(3)×R6

(
xT ; µ̃T |T , P̃T |T

)
◦ For t = T −1,T −2, ...,1
– For k = 1,2, ...,Np
· Set r with the value of
NSE(3)×R6

(
Xt+1; µ

(k)
t+1|t ,P

(k)
t+1|t

)
evaluated in Xt+1 = x(i)t+1

· w(k)
t|t+1 ∝ w(k)

t p(s̃t+1)r
– EndFor
– Set j = k with probability w(k)

t|t+1

– s̃t = s( j)
t , µ̃t|t = µ

( j)
t|t and P̃t|t = P( j)

t|t
– LG-RTS Smoother: Smooth µ̃t|t and
P̃t|t to get µ̃t|T and P̃t|T using µ̃t+1|T and
P̃t+1|T

– Draw x(i)t ∼NSE(3)×R6

(
xt ; µ̃t|T , P̃t|T

)
◦ EndFor
• EndFor

Finally, for t = 1,2, ...,T compute the centroid µt and the covariance Pt of the samples
{

x(i)t

}
i=1,...,Np

Technical details about LG-EKF propagation, Optimal Sampling, LG-EKF update and LG-RTS
Smoother are provided as supplementary material.

We manually annotated the trajectories of 6 different videos where the person wearing
the camera performs daily living activities. As explained in section 2, to the best of our
knowledge, there are not concurrent approach to address the VIL problem in this difficult
context. Consequently, to evaluate the performances of our approach, we estimated the tra-
jectories of the 6 video sequences with a CBIR algorithm only (see section 3.2) as it is
proposed in [7], the proposed LG-RBPS without virtual measurement2 and the LG-RBPS
with virtual measurements. The RMSE (m) of each approach is presented in Table 1. For
each video sequence, as expected, the proposed LG-RBPS, which employs the output of
the CBIR algorithm, produces a significantly lower RMSE than the CBIR algorithm alone.

2In this case, the algorithm chooses at each time instant whether it is better to select a measurement among the
available measurements or to discard all the available measurements (see [23]).
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GO80 GO81 GO82 GO83 GO84 GO85
CBIR only (similar to [7]) 1.7 1.3 2.4 2.2 1.3 2.2

CBIR + LG-RBPS No Virt. Meas. 0.5 0.7 1.7 0.9 <0.5 1.3
CBIR + LG-RBPS With Virt. Meas. 0.5 <0.5 0.8 0.7 <0.5 0.9

Table 1: Results on 6 challenging video sequences (GO80,..., GO85). Examples of video
frames from these videos are presented Fig.1(a) and Fig.2. The figures represent the RMSE
in meter of the estimated trajectories w.r.t the ground truth which has an accuracy of 0.5m.

(a) Result of the CBIR al-
gorithm (nearest neighbor)
similar to [7]

(b) CBIR+LG-RBPS with-
out virtual measurements

(c) CBIR+LG-RBPS with
virtual measurements

(d) Ground truth

Figure 4: Illustration of estimated trajectories on the video sequence GO82. Only the pro-
jection of the 3D position onto the apartment plan is presented.

Adding virtual measurements also significantly improves the performances of the LG-RBPS
when the CBIR algorithm produces poor results. In Fig.4, the camera trajectory estimated
with the 3 different approaches on the video sequence GO82 are presented. For this video
sequence, the proposed LG-RBPS with virtual measurements is the only approach where the
estimated camera trajectory does not cross walls. A video illustrating how the particles can
be employed to detect when the posterior distribution of the camera trajectory is multi-modal
and/or dispersed is provided as supplementary material.

7 Conclusion
In this paper, we presented a Visual Indoor Localization system for challenging video se-
quences coming from a single monocular camera where the person wearing the camera per-
forms daily living activities. We derived a novel Rao-Blackwellized particle smoother on
Lie groups that allows to significantly improve the output of a Content Based Image Re-
trieval (CBIR) algorithm and thus overcomes the lack of robustness in the state of the art
approaches. Moreover, we proposed to introduce virtual measurements in order to guide the
particles and prevent them from crossing walls especially when the CBIR algorithm pro-
duces poor results. To the best of our knowledge, it is the first time that a VIL system,
relying on the video frames only, is able to estimate the camera trajectory with a sub-meter
accuracy when: i) hand-held objects are frequently interposed between the camera and the
environment; ii) strong motion blur and differences in illumination occur; iii) the environ-
ment changes between the images of the database and the video frames to localize.

Future work will focus on robust visual odometry to help in the guidance of the particles
when the CBIR algorithm fails because of changes in the environment.
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