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Abstract

Human activity recognition has gained a lot of attention in the computer vision so-
ciety, due to its usefulness in numerous contexts. This work focuses on the recognition
of Activities of Daily Living (ADL), which involves recordings constrained to specific
daily activities that are of interest in assisted living or smart home environments. We
present a novel technique for spatial activity localisation and recognition from colour-
depth sequences, tailored to Activities of Daily Living (ADLs), which usually take place
in relatively constrained environments. The proposed method significantly reduces the
computational cost of activity recognition, while at the same time achieving a competi-
tive accuracy rate, comparable to the State of the Art (SoA). This is achieved by the in-
troduction of appearance and depth based spatiotemporal volumes, the Spatio-Temporal
Activity Cells (STACs), extracted using appearance and depth information from succes-
sive video frames. A novel adaptive background modelling method follows, to char-
acterize the STACs as “active” or “inactive” and accumulate them into foreground or
background history volumes respectively. After activity detection using the STACs, ac-
tivity recognition takes place using a novel, depth-based descriptor, the Histogram of
Surface Normals Projections (HONSP), in combination with well known appearance de-
scriptors (Histograms of Oriented Gradients, HOGs). Fisher encoding aggregates them
into a fixed size vector to train a multiclass SVM model, which is then used for activity
recognition. Experiments on different ADL datasets recorded with elderly people verify
that the suggested algorithm is very appropriate for real life scenarios.

1 Introduction

Over the last decade, researchers have put a lot of effort in understanding various aspects
of human activities for accurate activity recognition. Increased interest in ambient assisted
living is making computer vision solutions for Activity localisation and Recognition (ALnR)
necessary for monitoring and recognition of Activities of Daily Living (ADLs). This work
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presents an improved activity recognition approach, which achieves SoA accuracy at a re-
duced computational cost by leveraging information provided by colour-depth cameras. The
central contributions of this work are:

1. The introduction of Spatio-Temporal Activity Cells (STACs) for adaptive spatial
activity localisation through their dynamic characterisation as belonging to foreground
or background (Sec. 3.2).

2. The introduction of the Homogeneity criterion (Sec. 3.2), which re-classifies fore-
ground STACs as inactive when they stop changing, in a simpler manner than existing
adaptive background subtraction methods [5], [23].

3. The introduction of novel, depth-based descriptors, the Histogram of Surface Nor-
mals Projections (HOSNP), to replace computationally costly optical flow (OF) esti-
mation and/or human detection that are commonly used in the current activity recog-
nition SoA [8], [21]. The HOSNP supplement appearance information and help over-
come issues caused by local noise and occlusions, while indirectly including motion-
related information by accumulating changing appearance and depth data over time.

It should also be noted that the local nature of the STACs results in a fine boundary around
subjects, unlike the coarse bounding box used in spatial localisation methods that are based
on human detection and tracking [8, 16]. Furthermore, it goes beyond background subtrac-
tion, as it leverages depth information, enhancing the discrimination of moving from static
regions in an adaptive manner (Sec. 3.2). Our proposed method leverages the STAC-based
dynamic spatial localisation of activities for computationally efficient, yet accurate activ-
ity recognition, by simultaneously extracting trajectory, appearance (Histogram of Oriented
Gradients, i.e. HOG) and depth descriptors (Histogram of Oriented Surface Normals Pro-
jections, i.e. HOSNP) from spatio-temporal volumes comprising of successive foreground
STACs. The experiments show that, indeed, we achieve a significant reduction in compu-
tational cost, without loss in activity recognition accuracy. Experiments take place on three
real-world datasets for monitoring elderly individuals from a dataset, which is available for
research purposes upon demand.

This paper is organized as follows: Sec. 2 elaborates on ALnR related work for both
RGB and depth video data. Sec. 3 analyses the methodology that we propose for activity
localisation and recognition. Sec. 4 presents the experimental evaluation and comparisons
with related work while we finalize this paper with conclusions and future work in Sec. 5.

2 Related Work
Early spatial activity localisation, i.e. background subtraction, were mainly variations of the
GMM-based modeling of pixel intensities over time [5, 19]. This work goes beyond those
approaches, by leveraging both colour and depth information for more accurate background
removal, thanks to the increasing use of colour-depth cameras. Appearance information is
enriched with depth data, to discriminate between changes in a pixel’s intensity caused by
actual motion, or by its physical location in space, at a different depth. Indeed, the inclu-
sion of depth information leads to more accurate extraction of the foreground than standard,
GMM-based background removal methods, as shown in Fig. 1.

Temporal activity localisation, i.e. activity detection, has been examined in [8], and
more recently in [16], where a human detector and tracker was used. The authors trained an
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Figure 1: STAC activity localisation on the coloured figures against background subtraction
proposed by [19] on the binary masks.

SVM as a human classifier, providing a great deal of upper human body training examples
as input. The main disadvantage of this technique was the great computational cost of the
classifier, and the large number of training samples needed, since the human detector could
not be generalised to new video samples, as it led to a high false alarm rate without sufficient
training. An alternative indirect activity localisation algorithm, very common in early tech-
niques [4], [11], uses Spatio-Temporal Interest Points (STIP). However, this led to sparse
features which led to reduced activity recognition accuracy.

While spatial activity localisation is common in activity detection, it has not been used
often in activity recognition, until recently in [10], where the person’s location is treated as a
latent variable to be inferred simultaneously with activity recognition. This replaces expen-
sive human detection and tracking with a simple and lightweight machine learning problem.
However, [10] relies heavily on the modelling of the classifier, the amount of training data
and their resemblance to the test videos, leading to solutions that cannot be easily gener-
alized. Another Activity localisation and Recognition (ALnR) approach [17] introduced
hierarchical space-time segments: two levels of hierarchies, with the human body and body
parts respectively, were suggested to replace human detection and tracking. An unsupervised
step models the localisation, and is followed by the recognition step, leading to improved ac-
curacy. Spatial localisation algorithms in [20] improved activity recognition, inspired from
spatial pyramids [12] that were used for image encoding. Spatial activity localisation also
takes place with the computation of Motion Boundaries Activity Areas (MBAA), proposed
in [1] for the recognition of Activities of Daily Living (ADLs).

Currently, activity recognition uses the depth sequences provided by colour-depth cam-
eras [7] via features that rely on depth value differences between an interest point and its
neighbourhood in [3], or features like HON4D that represent the surface normal distribution
around the interest point [14] [18]. The main advantage of these methods is that they can
be used in a wide range of applications as they have a natural ability to deal with occlusion,
and lead to good performance in the recognition of complex actions with person-to-person or
human-to-object interactions. Inspired by these works, we introduce a depth histogram, the
Histogram of Surface Normal Projections (HOSNP). The HOSNP differs from HON4D as it
uses the projections of surface normals to compute the final spatio-temporal histogram. The
surface normal projections can be calculated quickly and with higher accuracy than the 3D
surface normals used to estimate HON4D [3], leading to a faster and more precise activity
representation. In particular, we compute the projections of the surface normals from finite
differences for each pixel, whereas 3D surface normals require computationally costly SVD
analysis to be calculated with accuracy.

We use a real world, publicly available (upon request) ADL dataset that contains a wider
range of activities, not limited to the kitchen. Most benchmark ADL datasets currently avail-
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Figure 2: Overview of our ALnR solution: depth frame refinement corrects noisy depth val-
ues. Adaptive background modelling uses HOG and HoD to separate “active” from “inac-
tive” STACs. HOG, HOSNP and 3D trajectories accumulated over time to represent human
activities. Fisher encoding over the whole video trains a multi-class SVM model.

able only include colour information, such as the KIT [6] robo-kitchen dataset that monitors
a kitchen environment and the ADLs that occur in it and the University of Rochester ADL
dataset [13]. The MSR dataset, used in [3], will be included in future work, as it includes
colour-depth information and has been used in senior monitoring applications, similarly to
our data.

3 Methodology
This section describes the aim of this work which focus on exploiting both depth and in-
tensity image characteristics for spatial activity localization and recognition. We intro-
duce adaptive spatial activity localisation using so-called Spatio-Temporal Activity Cells
(STACs), which are denoted as “active” or “inactive” based on the Histograms of Oriented
Gradients (HOG) and new appearance metrics, the Histograms of Depth (HoD). Similar
history-based adaptive background modelling methods rely only on appearance informa-
tion [5], [23]. Activity representation follows by aggregating HOGs, 3D trajectories and
a novel representation feature introduced in this work, the Histograms of Oriented Surface
Normals Projections (HOSNP) that is based on the surface normals of [22]. The overall
procedure of our system is depicted in Fig. 2.

3.1 Depth Frame Refinement
The depth data provided by colour-depth cameras eliminates the need for costly depth es-
timation, while providing a rich description of the scene. However, it is often noisy or has
missing values (holes), usually caused by: (a) light reflection, (b) shadows around the human
boundary or around objects that are attributed to different positions of the infrared camera
and infrared projector position (which constitute the depth-estimating components of the
colour-depth camera) and (c) high frequency light sources that add noise to the IR signal.

We follow a refinement strategy similar to [9] to eliminate holes in the depth image: the
depth history of every pixel in a hole is examined over W0 frames and its nonzero values are
accumulated into a vector. This vector’s median over time replaces the missing depth value,
under the assumption that it contains the most likely value for that pixel. The resulting cor-
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rected depth image does not contain holes, but the hole-filling strategy may have introduced
outliers, e.g. if moving entities occluded that pixel during the W0 frames. For this reason, it
is spatially filtered with a median filter to eliminate any potential noise artefacts, resulting in
a depth image that does not contain holes, and is spatially coherent.

3.2 Activity Localisation from Chi-Square Distance and Homogeneity
We perform spatially local adaptive background modelling by introducing a grid of Spatio-
Temporal Activity Cells (STACs), which are dynamically characterised as “active” or “inac-
tive”. Each STACi has dimensions 24×24 and is characterised by HOGs and Histograms of
Depth (HoD), extracted around the grid points over WSTAC frames, with WSTAC = 3 chosen
empirically to retain sufficient activity-related information.

Our adaptive background model uses two statistical criteria to determine if STACi is ac-
tive or inactive and to update the model appropriately: (i) the minimum Chi-square (χ2)
distance and (ii) the homogeneity criterion. Particularly, STACi are accumulated over N '
2 · f ps, forming two ”History Volumes” for each one of them, which are characterised either
as a Foreground History Volume (FgHVi) or a Background History Volume (BgHVi). All
BgHVi are initialised with data from the first 15 frames, assuming that only background is
present in them, while (a) the N most recent active STACs form the set of Foreground His-
tory Volumes (FgHV), (b) the N most recent inactive STACs form the set of Background
History Volumes (BgHV), as shown in Fig. 3. Once a new HOG/HoD descriptor is extracted
at each STACi, the algorithm computes its minimum χ2 distance from the current BgHV: if
it is below a predefined threshold thχ2 , the cell is similar to the background and marked as
“inactive”, with the corresponding STAC incorporated in the BgHVi. If the minimum dis-
tance is greater than thχ2 , the algorithm pushes the current descriptor into the corresponding
FgHVi and characterises it as “active”.

Figure 3: Adaptive background modelling: HOG/HoDs are extracted for each STAC and
assign it to BgHV or FgHV. The BgHV or FgHV are dynamically reclassified according to
the minimum chi-square distance and homogeneity.

When a STACi is assigned to the FgHVi, our method examines if it has been in the fore-
ground for a long time: when foreground STACs do not change over time, we consider that
they have become part of the background. This is determined by measuring their homogene-
ity, a new, intuitively meaningful metric that we introduce to define data similarity by taking
the inverse mean pairwise Chi-Square distance among all elements of each history volume.
As soon as BgHVi and FgHVi homogeneities are computed, they are compared to each other:
if the BgHVi has larger homogeneity than FgHVi, the two volumes remain unaltered. If the
FgHVi is more homogeneous, the pixels in it have not changed during the last N frames, so it
is reclassified as BgHVi, representing the current background. Thus, when FgHVi cells stop
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changing over time, they are integrated into a new background model.

3.3 Activity Recognition

As we progress through a video sequence, the set of all STACs that have been characterised
as “active” form a 3D volume. Our activity representation algorithm runs in parallel to the
adaptive background modelling and continuously samples this volume: the sampled points
are tracked over time with the KLT tracker [2], as shown in Fig. 4. HOGs and HOSNP are
then extracted in a 2×2×3 grid around each tracked point. The HOSNP consists of a 9-bin
histogram of the orientation of the projections of surface normals. Weikersdorfer et al. [22]
estimate the projection of surface normals at each pixel as follows: first, a disk of radius R
centered at depth(x,y) is considered, and its projection r0(x,y) on pixel (x,y) is defined as:

r0(x,y) = f ·R/depth(x,y), (1)

where f is the sensor’s focal length and r0(x,y) is the radius projection on (x,y). The normal
vector pn for each STAC pixel is computed from finite differences using the depth gradient:

pn = ∇depth(x,y) =
1

2dW

(
depth(x+dp,y)−depth(x−dp,y)
depth(x,y+dp)−depth(x,y−dp)

)
(2)

where dW is a radius equal to R/2 and dp is its corresponding projection on pixel (x,y),
calculated by (1). The histogram of all pn’s in the STAC then forms the HOSNP.

Figure 4: Activity representation in active STACs when the person stretches an arm: active
STACs define the activity volume (in green) which is sampled to extract activity descriptors.
Sampled points (crosses) that remain inside the activity volume continue to be tracked.

The HOG and HOSNP that lie in the same cuboid are accumulated and normalized and
then concatenated with 3D trajectory coordinates (x,y,depth(x,y)) to form local activity de-
scriptors. The activity recognition algorithm applies Fisher encoding on the descriptors [15],
for a more compact dense representation than the commonly used Bag-of-Words approaches,
and a multiclass SVM follows for activity recognition.
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Figure 5: DemCare1 (top row), DemCare2 (middle row) and DemCare3 (bottom row) video
frame examples. From left to right DemCare1: Eat Snack, Enter Room, HandShake, Read
Paper, DemCare2: Serve Beverage, Start Phonecall, Drink Beverage and HandShake, Dem-
Care3: Prepare Drug Box, Prepare Drink, Turn On Radio, Water Plant.

4 Experiments
Experiments take place on three datasets of elderly people carrying out semi-supervised
ADLs, which are available for research purposes upon request1. The videos were recorded
with a static camera, at a 640×480 pixel resolution and contain various activities, recorded in
different environments, while also featuring anthropometric variations between the subjects,
as they carry out the ADLs in different ways. Characteristic frames are shown in Fig. 5. The
videos are split into training/testing following a One-Subject-Out-against-All logic in our
experiments, so as to reduce the anthropometric variance on each SVM model.

We examined various combinations of the descriptors to assess their significance and
role, so Tables 2-4 compare recognition accuracy with: (1) HOG, (2) HOSNP, (3) HOG-
HOSNP, (4) HOG-HOSNP and 3D trajectory. Comparisons on accuracy and speedups are
provided with SoA activity recognition methods [21], and methods that focus on ADL recog-
nition [1]. The processing time of [21] is used as baseline for measuring time complexity,
and is compared to the speedup achieved by our method and also that of [1]. The parameters
for each video are shown empirically to be related to the fps of the video recordings: the
temporal length of the BgHV and FgHV is approximately equal to 2× fps, while the best
trajectory length is approximately equal to the fps and the optimal threshold values are found
to be near 10 (from 9 to 13), as shown in Table 1.

Activity Recognition on DemCare1: The first dataset, DemCare1, consists of 1 hour
and 52 min recordings at 8 fps of 32 elderly people performing ADLs in a home-like envi-
ronment. The camera is in front of the subject while they perform the following activities:

1Dem@Care action datasets
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Dataset fps BgHV, FgHV temporal size N threshold th
χ2 trajectory size

D1 7.75±0.61 20 9.5 9
D2 18.53±1.98 29 9 15
D3 2.69±0.70 9 13 6

Table 1: Experimental parameters in relation to the fps.

Activity HOG HOSNP HOG + HOSNP HOG+HOSNP +3D Traj [1] [21]
CU 69.4 88.9 91.7 88.9 85.3 81.1
DB 74.5 70.2 83.0 87.2 87.8 87.7
EP 57.6 75.8 84.8 93.9 84.4 90.9
ER 95.3 98.4 100.0 100.0 100.0 100.0
ES 39.1 54.3 58.7 78.3 71.1 89.6
HS 93.8 96.9 96.9 100.0 93.8 87.5
PS 41.2 50.0 61.8 64.7 68.6 80.0
RP 90.6 100.0 96.9 100.0 87.5 93.7
SB 50.0 82.4 73.5 85.3 82.4 94.1
SP 69.7 84.8 90.9 93.9 78.8 87.8
TV 90.6 93.8 100.0 93.8 96.9 100.0
Av. Accuracy 70.2 81.4 85.3 89.6 85.1 90.2
Speed ×14.8 ×2.2 ×1

Table 2: DemCare1 dataset accuracy over all classes for different combinations of descriptors
(appearance only, depth only, combined appearance-depth, with and without the 3D trajec-
tory). Average accuracy and time complexity in fps are reported, showing that the proposed
method recognises activities with high accuracy and at a lower computational cost.

Cleaning Up (CU), Drink Beverage (DB), End Phonecall (EP), Enter Room (ER), Eat Snack
(ES), Hand-Shake (HS), Prepare Snack (PS), Read Paper (RP), Serve Beverage (SB), Start
Phone-call (SP) and Talk to Visitor (TV). Table 2 shows that the combination of appearance
(HOG), depth (HOSNP) and 3D trajectory information led to high accuracy for most activ-
ities. The use of only appearance and depth information for “Cleaning Up” led to slightly
better results than when the trajectory information was not included, which can be attributed
to small inaccuracies in trajectory information. The method of [1] led to better results for
Drink Beverage (+0.6%), Prepare Snack (+3.9%) and Talk to Visitor (+3.1%), showing
that OF was more important than depth in these activities, as they feature small variations
in depth. The use of colour-depth and 3D-trajectories led to an average accuracy of 89.6%
over all classes, outperforming [1]. There is a significant improvement in activities that are
very difficult to recognize, like End Phonecall (+9.5%), Eat Snack (+7.2%), Read Paper
(+12.5%), as they feature small motions that are not extracted very accurately, so they are
better distinguished through the use of appearance and depth. The proposed algorithm’s
mean processing speed was about 14.8 times faster than [21] and 6.7 times faster than [1].
Thus, for this dataset our appearance-depth-3D trajectory descriptor leads to compa-
rable average accuracy with the SoA (−0.6%), and is 14.8 times faster.

Activity Recognition on DemCare2: DemCare2 consists of 1 hour and 59 min record-
ings at 18 fps, where 24 subjects perform ADLs in a different room than DemCare1, with the
colour-depth sensor placed further from the activities. The ADL classes are: Cleaning Up
(CU), Drink Beverage (DB), End Phonecall (EP), Enter Room (ER), Eat Snack (ES), Hand-
Shake (HS), Prepare Snack (PS), Read Paper (RP), Serve Beverage (SB), Start Phonecall
(SP), Talk to Visitor (TV) and Use Closet (UC). Most activity classes are the same as in the
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Activity HOG HOSNP HOG + HOSNP HOG+HOSNP +3D Traj [1] [21]
CU 48.0 60.0 64.0 76.0 88.6 76.6
DB 17.6 11.8 26.5 20.6 35.6 64.9
EP 65.2 78.3 65.2 95.7 92.0 92.0
ER 96.0 96.0 96.0 96.0 96.0 89.6
ES 94.3 84.9 90.6 86.8 91.9 82.5
HS 86.4 81.8 90.9 95.5 91.7 88.0
PS 25.0 35.7 39.3 75.0 81.3 56.2
RP 95.7 87.0 91.3 95.6 96.0 88.0
SB 36.7 43.3 53.3 43.3 58.7 63.6
SP 91.7 91.7 91.7 91.7 98.0 81.4
TV 54.5 77.3 95.5 90.9 79.2 80.0
UC 91.3 91.3 95.7 91.3 90.0 96.0
Av. Accuracy 66.9 69.9 75.0 79.9 83.2 79.9
Speedup ×11.8 ×2.3 ×1

Table 3: DemCare2 dataset accuracy over all classes for different combinations of descriptors
(appearance only, depth only, combined appearance-depth, with and without the 3D trajec-
tory). Average accuracy and time complexity in fps are reported, showing that the proposed
method recognizes activities with high accuracy and at a lower computational cost.

previous dataset, they take place in a different room, so they are not performed the same way.
Table 3 shows that [1] led to better results for most activities, with the highest average accu-
racy of 83.2%, while the proposed approach achieved 79.9%. This can be attributed to the
fact that the colour-depth camera is placed at a longer distance from the activities, providing
less accurate depth information. Also, this recording included more motion, not sufficiently
captured in the changing depth and appearance features. The combined use of appearance
and depth led to the best results for TV and UC, as they are not characterised by signifi-
cant motion, and depth plays a more important role in their description. The HOG+HOSNP
descriptor led to an improvement of almost 5% over HOSNP, while the inclusion of 3D tra-
jectory information led to a further improvement of almost 5% over HOG+HOSNP, resulting
in 79.9% average accuracy. Thus, for DemCare2 our method led to −3.3% average ac-
curacy than [21] and [1], but was about 11.8 and 5.1 times faster respectively.

Activity Recognition on DemCare3: DemCare3 includes 4 hours of 3 fps recordings
of 25 subjects performing ADLs. The colour-depth camera is mounted on a higher level
than the subject’s head and the activities are: Answer the Phone (AP), Establish Account
Balance (EAB), Prepare Drink (PD), Prepare Drug Box (PDB), Water Plant (WP), Read
Article (RA), Turn On Radio (TOR). This dataset is more challenging than D1 and D2 as
some activities are quite far away from the camera, giving poor depth information. Indeed,
in Table 4, HOSNP achieves comparable, but lower mean average accuracy (by −1.6%)
than HOG, as distant activities are not well discriminated. The combined use of HOG and
HOSNP leads to improved results, giving an average accuracy of 88.6%, while the inclusion
of 3D trajectory information leads to further improvements, resulting in the highest average
accuracy, of 94.5%, while the literature achieves 93.3% in [1] and 91.7% in [21]. Thus, our
method achieves the highest average accuracy at a speed 5.5 times faster than [1] and
21.4 times faster than [21].
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Activity HOG HOSNP HOG + HOSNP HOG+HOSNP +3D Traj [1] [21]
AP 80.0 88.0 88.0 100.0 96.0 96.0
EAB 33.3 8.3 58.3 75.0 83.3 83.3
PDB 69.6 87.0 82.6 91.3 95.2 88.9
PHT 100.0 100.0 100.0 100.0 96.0 100.0
RA 95.5 81.8 100.0 100.0 90.9 85.7
TOR 100.0 92.9 100.0 100.0 96.4 100.0
WP 86.4 95.5 90.9 95.5 95.0 88.2
AvAcc 80.7 79.1 88.6 94.5 93.3 91.7
Speedup ×21.4 ×3.9 ×1

Table 4: DemCare3 dataset accuracy over all classes for different combinations of descriptors
(appearance only, depth only, combined appearance-depth, with and without the 3D trajec-
tory). Average accuracy and time complexity in fps are reported, showing that the proposed
method recognizes activities with the highest accuracy and lowest computational cost.

5 Conclusions
This work presents a new method for activity representation and recognition that leverages
the information provided by colour-depth cameras for accurate and computationally efficient
recognition of human activities. Focus is on the recognition of ADLs, which is central in
many applications, such as monitoring in assisted living and smart home environments. The
depth data is used to build Histograms of Oriented Surface Normal Projections (HOSNP),
which represent shapes and depth in the scene. HOSNP indirectly capture information about
the motion in the scene, while avoiding the costly OF estimation, as changes in depth are
indirectly related to motion. Appearance information is also included in our representation
via HOGs, which complement the motion/depth description of the HOSNP, as they describe
details inside objects. Experiments with publicly available datasets and comparisons with
combinations of appearance/depth descriptors and existing methods demonstrate that the
proposed algorithm achieves accuracy comparable to the SoA, while reducing the computa-
tional cost. Future work involves the extension of the proposed approach to more complex
benchmark datasets, (such as the MSR action dataset), comparisons in terms of accuracy and
speed with the SoA, e.g. HON4D [14] and Histograms of Surface Normals [18], and finally,
the development of a full spatiotemporal activity localisation system.
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