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Figure 1: Overview of the proposed method – one-shot learning leverag-
ing other categories. Given one example for an event of interest (Event
1), we implicitly infer the relevance between it and other events, and em-
phasise more on the most relevant ones in the multi-task learning. The
learned classifier for the event of interest is applied to retrieve instances
from a video test set.

This paper proposes a new multi-task learning method with implicit inter-
task relevance estimation, and applies it to complex Internet video event
detection, which is a challenging and important problem in practice, yet
seldom has been addressed. In this paper, “detection” means to detect
videos corresponding to the event of interest from a (large) video dataset,
not to localize the event spatially or temporally in a video. In the problem
definition, one positive and plenty of negative samples of one event are
given as training data, and the goal is to return the videos of the same
event from a large video dataset. In addition, we assume samples of other
events are available.

Fig. 1 shows an overview of the proposed methods. The widths of the
lines between the one-exemplar event and others represent the inter-event
relevance, which is unknown a priori in our problem settings. However,
the proposed method can implicity infer the relevance and utilize the most
relevant event(s) more in multi-task learning, where the shared informa-
tion from the relevant events helps to build a better model from the one
exemplar. The proposed method does not assume the relevance between
other events, as indicated by the red line. Although the learning algorithm
outputs models of all input events, only that of the one-exemplar event is
applied to detect videos of the event of interest from the video set.

Our method builds on the approach of graph-guided multi-task learn-
ing [1], which is described first. The training set {(xti,yti)∈RD×{−1,+1}, t =
1,2, . . . ,T, i = 1,2, . . . ,Nt} is grouped into T related tasks, which are fur-
ther organized as a graph G =<V,E >. The tasks correspond to the ele-
ments in the vertex set V , and the pairwise relevance between Task t and k
are represented by the weight rtk on edges etk ∈ E. The more relevant the
two tasks are, the larger the edge weight is. The graph guided multi-task
learning algorithm learns the corresponding T models jointly, by solving
the optimization problem

min
W,b

T

∑
t=1

Nt

∑
i=1

Loss(wT
t xti +bt ,yti)+λ1‖W‖2

F +λ2Ω(W), (1)

where wt ∈ RD and bt ∈ R are the model weight vector and bias term of
Task t, respectively, W = (w1,w2, . . . ,wT ) is the matrix whose columns
are model weight vectors, b = (b1,b2, . . . ,bt), ‖W‖2

F = Trace(WT W) is
the squared Frobenius norm,

Ω(W) = ∑
etk∈E,t<k

rtk‖wt −wk‖2
2 (2)

is the graph-guided penalty term. For the significantly relevant tasks,
their model weight vectors are forced to be similar due to the large edge

weights, and the information could be transferred between relevant tasks.
Loss(·, ·) is the loss function. In our work we use logistic loss

Loss(s,y) = log(1+ exp(−ys)), (3)

which is smooth and leads to an easier optimization problem compared to
the hinge loss.

In the one-shot learning setting for event detection, it is hard to learn
a good model for the specific event of interest from the only one positive
sample. However, due to the potential relevance between events, one can
expect a better model by applying multi-task learning to the event with
one positive sample and some other events. In the multi-task setting, each
of these other events corresponds to one task.

Different external events may share different common “part” with the
event of interest. Consider that “birthday party” as the event of interest,
and it is relevant to “parade” since both have lots of people inside, and it
may be also relevant to “preparing food” due to the food itself. However,
there is little relevance between “parade” and “preparing food”. There-
fore, cluster-based multi-task learning may not be used to learning the
event of interest, because not all external events relevant to the event of
interest are relevant enough to each other to fit into one cluster. In con-
trast, graph-guided multi-task does not assume the clustered structure of
the tasks, and it a better choice for this task.

Without losing the generality, we assume Event 1 is the event of in-
terest and others are external event in the following. Given the graph in
Fig. 1, the formulation in (1) is not directly applicable because the pair-
wise relevance is unknown. However, the min operation can be added
to select the most relevant tasks automatically, and they are all equally
weighted, i.e. using

Ω(W) = ∑
t∈TK

‖w1−wt‖2
2 (4)

instead of (2), where TK is the set of indices corresponding to the mini-
mum K elements in {‖w1−wt‖2

2}T
t=2. The most relevant tasks and task

models are jointly optimised in the training process. The minimum op-
eration can be further replaced by softmin function to make the objective
smooth, i.e.

Ω(W) =− log
T

∑
t=2

exp(−‖w1−wt‖2
2). (5)

This penalty focuses more on the smallest inter-model distance, which is
slightly different from the former one with equally weighted K smallest
distances. The experiments show that we can get good results with the
smooth penalty. In addition to squared l2 distance, one can also use the
penalty term represented by correlations. The term still focuses more on
most relevant tasks, but softmax is used in the representation, i.e.

Ω(W) =− log
T

∑
t=2

exp(wT
1 wt). (6)

We use the first option in the following experiments. All penalties in
this subsection make the objective non-convex, but one can still get good
results empirically. The objective is optimized by Quasi-Newton Soft-
Threshold (QNST) method [2].
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