
Hashmod: A Hashing Method for Scalable 3D Object Detection

Wadim Kehl1

kehl@in.tum.de

Federico Tombari12

federico.tombari@unibo.it

Nassir Navab1

navab.cs.tum.edu

Slobodan Ilic3

slobodan.ilic@siemens.com

Vincent Lepetit4

lepetit@icg.tugraz.at

1 Computer-Aided Medical Procedures,
TU Munich, Germany

2 Computer Vision Lab (DISI),
University of Bologna, Italy

3 Siemens AG
Research & Technology Center
Munich, Germany

4 Institute for Computer Graphics and Vision,
TU Graz, Austria

Figure 1: A sliding window evaluates learned hash functions h computed
on extracted LineMOD features x to efficiently index into subsets of can-
didate views for further matching.

We present a scalable method for detecting objects and estimating
their 3D poses in RGB-D data. To this end, we rely on an efficient repre-
sentation of object views and employ hashing techniques to match these
views against the input frame in a scalable way. While a similar approach
already exists for 2D detection, we show how to extend it to estimate the
3D pose of the detected objects. In particular, we explore different hash-
ing strategies and identify the one which is more suitable to our problem.
We show empirically that the complexity of our method is sublinear with
the number of objects and we enable detection and pose estimation of
many 3D objects with high accuracy while outperforming the state-of-
the-art in terms of runtime, as depicted in Figure 2.

Descriptor computation Given a database of M objects, we synthet-
ically create N views for each object from poses regularly sampled on
a hemisphere of a given radius. From this, we compute a set D of d-
dimensional binary descriptors

D =
{

x1,1, ...,xM,N
}
, (1)

where xi, j ∈ Bd is the descriptor for the i-th object seen under the j-th
pose. We use LineMOD [1] in practice to compute these descriptors and
concatenate the binary representation to obtain the binary strings xi, j.

Hash learning We learn several hashing functions whose purpose is to
immediately index into a subset, often called a “bucket”, of D when ap-
plied to a descriptor x ∈ Bd during testing (see Figure 1). These buckets
are filled with descriptors from D with the same hash value so that we can
restrict our search for the nearest neighbor of x to the bucket retrieved via
the hashing function instead of going through the complete set D. It is
very likely, but not guaranteed, that the nearest neighbor is in at least one
of the buckets returned by the hashing functions. In practice, a careful se-
lection of the hashing functions is important for good performance. Since
the descriptors x are already binary strings, we design our hashing func-
tions h(x) to return a short binary string made of b bits directly extracted
from x. This is a very efficient way of hashing and we will refer to these
short strings as hash keys. We evaluated multiple strategies and settled
for the one below that is inspired by greedy tree growing for Randomized
Forests:

Starting with a set of descriptors at the root, we determine the bit
that splits this set into two subsets with sizes as equal as possible, and
use it as the first bit of the key. For the second bit, we decide for the
one that splits those two subsets further into four equally-sized subsets
and so forth. We stop if b bits have been selected or one subset becomes

Figure 2: Runtime comparison with the state-of-the-art template matching
DTT-3D [2]. Our method overtakes due its sublinear time complexity.

empty. This procedure alone yields a balanced tree with leafs of similar
numbers of elements. Each hash key can be regarded as a path down
the tree and each leaf represents a bucket. Note that such a balanced
repartition ensures retrieval and matching at a constant speed. We now
further adapt the strategy to our problem: to improve detection rates we
favor similar views of the same object to go into different branches. The
idea behind this strategy is to reduce misdetections due to noise or clutter
in the descriptors, leading to different buckets during testing. Formally,
the j-th bit B of the key is selected by solving:

argmin
B

1
|Ni|∑i

∣∣∣|SB
L (Ni)|−|SB

R (Ni)|
∣∣∣+ 1
|Ni|2

(
P(SB

L (Ni))+P(SB
R (Ni))

)
,

(2)
where Ni ⊂D is the set of descriptors contained by the i-th node at level j,
and SB

{L,R}(Ni) are the two subsets of Ni that go into the left and right child
induced by splitting with B. The first term in above equation balances
equal splits whereas the second penalizes similar views of the same object
falling into the same side of the split.

Results We ran our method on the LineMOD ACCV12 dataset [1] con-
sisting of 15 objects. We are able to consistently detect at around 95%−
96% accuracy on average which is slightly worse than LineMOD and
DTT-3D. However, we are always faster than LineMOD and overtake
DTT-3D at around 8 objects where our constant-time hashing overhead
becomes negligible and the methods’ time complexities dominate. This is
important to stress since real scalability comes from a sublinear growth.

[1] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradsky, K. Kono-
lige, and N. Navab. Model Based Training, Detection and Pose Esti-
mation of Texture-Less 3D Objects in Heavily Cluttered Scenes. In
ACCV, 2012.

[2] R. Rios-Cabrera and T. Tuytelaars. Discriminatively trained tem-
plates for 3D object detection: A real time scalable approach. In
ICCV, 2013.

