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Abstract

Automatic emotion analysis and understanding has received much attention over the
years in affective computing. Recently, there are increasing interests in inferring the
emotional intensity of a group of people. For group emotional intensity analysis, fea-
ture extraction and group expression model are two critical issues. In this paper, we
propose a new method to estimate the happiness intensity of a group of people in an
image. Firstly, we combine the Riesz transform and the local binary pattern descriptor,
named Riesz-based volume local binary pattern, which considers neighbouring changes
not only in the spatial domain of a face but also along the different Riesz faces. Sec-
ondly, we exploit the continuous conditional random fields for constructing a new group
expression model, which considers global and local attributes. Intensive experiments are
performed on three challenging facial expression databases to evaluate the novel feature.
Furthermore, experiments are conducted on the HAPPEI database to evaluate the new
group expression model with the new feature. Our experimental results demonstrate the
promising performance for group happiness intensity analysis.

1 Introduction
In recent years, millions of images and videos have been uploaded on the Internet (e.g. in
YouTube and Flickr), enabling us to explore images from a social event, such as a family
party. However, until recently, relatively little research has examined group emotion in an
image. To advance affective computing research, it is indeed of interest to understand and
model the affect exhibited by a group of people in images.

Recently, Dhall et al. [6] investigated the problem of happiness intensity analysis of a
group of people in an image using facial expression analysis. This is one of the earliest
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attempts investigating the perception of emotion of a group of people in images. In [7],
based on a survey conducted, the same authors argued that the perceived mood of a group of
people in images is based on global and local attributes. For estimating happiness intensity,
a group expression model (GEM) was proposed based on topic modelling and manually
defined attributes for combining the global and local attributes. The Histogram of Oriented
Gradient (HOG) was employed as a face descriptor for local attribute. However, in our
observation in this paper, the group expression recognition performance is affected by the
choice of facial expression descriptors. Additionally, a GEM based on topic modelling is
limited by the visual vocabulary; and many parameters need to be considered during the
training of the topic model and the construction of the dictionary. Thus, it is necessary to
exploit more robust facial expression features and an efficient GEM for group happiness
intensity analysis, which can model the structure of a group.

Facial expression descriptors can be broadly defined as geometric or appearance based.
Geometric-based features represent the face geometry, such as the shapes and locations of
facial landmarks. Instead, appearance-based features describe the skin texture of faces. How-
ever, geometric-based features are sometimes sensitive to illumination variation, pose change
and error in fiducial points detection. Appearance features, as opposed to geometric features,
have certain advantages in that they are more stable to such global changes as illumination
and inaccurate alignment. Gabor wavelets [21] are used to capture the local structure corre-
sponding to spatial frequency, spatial localisation and orientation selective. They have been
demonstrated to be discriminative and robust to illumination changes. Another face descrip-
tor, namely local binary pattern (LBP) [23], is a simple and efficient manner to represent
faces, which is also robust to global changes. Recently, Zhang et al. [38] combined the Ga-
bor and LBP descriptors (LGBP) to improve the face recognition performance. However,
Gabor filters suffer from two problems: (1) they are not optimal if the broad spectral informa-
tion with maximal spatial localization need to be sought and (2) their maximum bandwidth
is restricted to about one octave [33].

Recent studies [10, 17, 25, 34, 36, 37] have demonstrated the local image information
can be well characterized in a unified theoretic framework, namely the Riesz transform. Fels-
berg and Sommer proposed to use the Riesz transform for image processing [10]. In their
work, they proposed the monogenic signal based on the 1st-order Riesz transform, which
extends the classical analytic signal to a 2D domain. Additionally, a monogenic signal can
well address the limitations of Gabor filters (i.e., not optimal and the restricted maximum
bandwidth) because of the utilization of a log-Gabor filter. Until recently, Riesz transform
has attracted much interest from researchers in the field for texture classification [37] and
face analysis [17, 34]. However, from the intrinsic dimension theorem [35], the 1st-order
Riesz transform is designed just for an intrinsic 1D signal, but losing some important com-
plex structures, such as corners. In order to characterize the intrinsic 2D local structures, the
higher-order Riesz transforms have been developed for biometric recognition [36] and tex-
ture recognition [25]. Zhang et al. [36] proposed to utilize the 1st-order and 2nd-order Riesz
transforms to encode the local patterns of biometric images. Thus, it begs the question if
the higher-order Riesz transforms can also provide rich information for face representation.
Motivated by [25, 36], we propose a new method based on the higher-order Riesz transform
and local binary patterns for characterizing facial expressions.

Images from social events generally contain a group of people. The analysis of the mood
of a group of people in images has various applications such as image album creation, event
summarization, key-frame selection and recommendation. Social psychology studies sug-
gest that group emotion can be conceptualised in different ways. Generally, group emotion
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can be represented by pairing the bottom-up and top-down approaches [2, 19].
In the bottom-up methods, the subjects’ attributes are employed to infer information at

the group level. Hernandez et al. [15] proposed a bottom-up approach, in which an av-
erage over the smiles of multiple people was used for inferring the mood of the passerby.
However, in reality, perceived group mood is not an averaging model [19]. In the case of
top-down techniques, external factors to the group and members are considered, e.g., the
effect of the scene. In an interesting top-down approach, Gallagher and Chen [12] proposed
contextual features based on the group structure for computing the age and gender of indi-
viduals. Another top-down approach, Stone et al. [31] proposed a Conditional Random Field
(CRF) based on social relationship modelling between Facebook contacts for the problem
of face recognition.

Dhall et al. [6]’s GEM models are an example of a hybrid approach, which considers
both face-level expressions and neighbor effect. Their conducted a survey and argued that the
mood of a group of people in images is based on top-down and bottom-up components: (1)
the top-down component is referred to as global attributes such as the effect on the mood of a
group member due to the neighbours; (2) the bottom-up component is referred to as low-level
attributes such as the contribution of an individual’s mood based on their facial expressions
to the overall mood of the group. A GEM based on topic modelling and manually defined
attributes are presented to combine the global and local attributes.

Recently, continuous conditional random fields (CCRF) have been proposed to model
the content information of objects as well as the relation information between objects for
global ranking problem [27]. Furthermore, Imbrsaite et al. [18] designed CCRF to model
the affect continuously for dimensional emotion tracking. They demonstrated that CCRF
is more suitable to continuous output variable modelling than CRF. Inspired by [7, 27], we
propose to combine top-down and bottom-up components by using CCRF for a novel GEM.

The key contributions of this paper are as follows: (1) A new facial expression de-
scriptor based on the Riesz transform is developed, which is robust to real-world situations
including pose change and illumination variation; (2) A novel GEM approach is presented to
effectively combine global and local attributes; and (3) The combination of the new feature
and GEM approach is used to infer the happiness intensity of a group of people in an image.

To explain the concepts in our approach, the paper is organised as follows: In Section 2,
we introduce Riesz-based volume local binary patterns as a facial expression descriptor. In
Section 3, we provide a new GEM to estimate group happiness intensity. In Section 4, we
present the results of examining the proposed feature and GEM for group happiness intensity
analysis. Finally, we draw our conclusions in Section 5.

2 Riesz-based volume local binary patterns
In this section, we firstly give a brief review of the higher-order Riesz transform. Subse-
quently, we provide details of our proposed facial expression descriptor, named Riesz-based
volume local binary patterns (RVLBP).

2.1 Higher-Order Riesz Transform
The Riesz transform [30] is a natural generalization of the Hilbert transform. Riesz transform
based image analysis has been utilized in numerous fields [17, 25, 33, 36], but prior to
applying Riesz transform to image analysis, it is necessary to pre-filter the image with a
suitable band-pass filter, because real images commonly contain a wide range of frequencies.
So far, many candidates on the band-pass filter have been proposed in the literature. In

Citation
Citation
{Bars{ä}de and Gibson} 1998

Citation
Citation
{Kelly and Bars{ä}de} 2001

Citation
Citation
{Hernandez, Hoque, Drevo, and Picard} 2012

Citation
Citation
{Kelly and Bars{ä}de} 2001

Citation
Citation
{Gallagher and Chen} 2009

Citation
Citation
{Stone, Zickler, and Darell} 2008

Citation
Citation
{Dhall, Joshi, Radwan, and Goecke} 2013

Citation
Citation
{Qin, Liu, Zhang, Wang, and Li} 2008

Citation
Citation
{Imbrsaitunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {eglobal mathchardef accent@spacefactor spacefactor }accent 10 eegroup spacefactor accent@spacefactor , Baltru²aitis, and Robinson} 2013

Citation
Citation
{Dhall, Goecke, and Gedeon} 2015{}

Citation
Citation
{Qin, Liu, Zhang, Wang, and Li} 2008

Citation
Citation
{Stein and Weiss} 1971

Citation
Citation
{Huang, Zhao, Zheng, and Pietik{ä}inen} 2012{}

Citation
Citation
{Pan and Tang} 2012

Citation
Citation
{Yang, Zhang, Zhang, and Zhang} 2010

Citation
Citation
{Zhang and Li} 2012



4 X. HUANG: RIESZ-BASED VOLUME LOCAL BINARY PATTERN

Figure 1: Illustration of Riesz-based volume local binary patterns for Rx: (a) A face image;
(b) The 1st-order Riesz face Rx and its volume, where Z represents the axis of scale and

orientation of Riesz transform; and (c) feature extraction for the Rx component.

this paper, we choose the commonly utilized multi-orientation and multi-scale log-Gabor
filter [11], which is defined in the frequency domain as:

G(ω,θ) = exp(
log( ω

ω0
)2

2(log(σω

ω0
))2 )exp(

−(θ −θ0)
2

2σ2
θ

), (1)

where ω0 is the centre frequency, σω is the width parameter for the frequency, θ0 is the
centre orientation, and σθ is the width parameter of the orientation.

Along with the log-Gabor filter, the 1st-order Riesz transform in the nD spatial domain
can be expressed as:

R j(X) = g(ω,θ)∗ cn
X j

|X|n+1 , (2)

where cn = Γ[(n+1)/2]/π(n+1)/2, X = [x1,x2, . . . ,xn], j = 1, . . . ,n, and g(ω,θ) is the spatial
expression of log-Gabor G(ω,θ).

The intrinsic dimension is used to describe a local image structure [35, 36]. In a 2D
image, the local structure can be classified into numerous regions of i0D, i1D and i2D struc-
tures. For example, constant areas are of intrinsic dimension zero (i0D), while straight lines
and edges are of intrinsic dimension one (i1D). According to the intrinsic dimension, for 2D
images, the 1st-order Riesz transform enables the rotationally invariant analysis of the i1D
structure; the 2nd-order Riesz transform can characterize i2D image structures such as cor-
ners and texture [35]. Therefore, the 1st-order and 2nd-order Riesz transforms are employed
to describe the structure of a facial expression image. According to Eq. 2, in the case of a
2D image, X = (x,y), the 1st-order and 2nd-order Riesz transforms are expressed as:

hx(X) = g(ω,θ)∗ x
2π|X|3

, hy(X) = g(ω,θ)∗ y
2π|X|3

, (3)

hxx(X) = hx{hx}(X) = hx(X)∗hx(X), (4)
hyy(X) = hy{hy}(X) = hy(X)∗hy(X), (5)
hxy(X) = hx{hy}(X) = hx(X)∗hy(X). (6)

In this paper, we use log-Gabor filters at three scales and four orientations, thus deriving
the 1st-order and 2nd-order Riesz components by convolving face images with log-Gabor
filters. For an image I(x,y), we will obtain new Riesz faces for hx(X) as:

Rx = I(x,y)∗ [hx(X)1
1, . . . ,hx(X)4

3]. (7)

For Rx, these Riesz face images can then be resembled to form the Riesz volume. Fig. 1(a-
b) shows an example of a face image with its corresponding volume of Riesz face Rx. The
same procedure of obtaining Rx is applied to hy(X), hxx(X), hyy(X) and hxy(X) for obtaining
Ry, Rxx, Ryy, Rxy, respectively.
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2.2 Riesz-based Volume Local Binary Patterns (RVLBP)
Local binary pattern has been demonstrated as a powerful and efficient local descriptor for
micro-features of images in face analysis and texture classification. Recently, the combi-
nation of a Riesz-based method and LBP has been shown to be an effective way for many
applications [17, 25, 34]. Moreover, Lei et al. [20] developed an approach to exploit the
neighbouring relationship in the spatial domain and various Gabor faces. Inspired by this,
we propose to explore discriminative information from the 1st-order and 2nd-order Riesz
faces.

For a face image, the derived Riesz faces can be formulated as the 3D volume as illus-
trated in Fig. 1(b), where the three axes X , Y and Z denote width and height of face image
and different types of Riesz filters, respectively. Local binary pattern from three orthogonal
planes [16, 39] applies LBP separately on three orthogonal planes, which intersect in the
centre pixel. All histograms can describe effectively appearance and motion from an image
sequence. Motivated by this, we conduct LBP analysis on three orthogonal planes of Riesz
volume, exploring not only spatial pixel correlation in a Riesz face but also the relationship
among Riesz faces along frequency and orientation directions.

In this work, we first employ the LBP operator on XY , XZ and Y Z of volume-based Riesz
faces, respectively. Secondly, we combine the results of these planes to represents faces. For
each plane, its histogram is computed as

H j(l) = ∑
x,y

L( f j(x,y) = l), l = 0,1, . . . ,Q j−1, (8)

where L(x) is a logical function with L(x) = 1 if x is true and L(x) = 0 otherwise; f j(.)
expresses the LBP codes in the j-th plane ( j = 0 : XY ;1 : XZ;2 : Y Z), and Q j is the bin
number of the LBP code in the j-th plane. Finally, the histograms HXY , HXZ and HY Z are
concatenated into one feature vector H. The procedure is shown in Fig. 1(c).

Following Section 2.1, Rx, Ry, Rxx, Ryy, Rxy are obtained. For each component Rm
(m = {x,y,xx,xy,yy}), Hm is obtained by using the above-mentioned procedure. These five
histograms Hx,Hy,Hxx,Hxy,Hyy are concatenated into one feature vector F for represent-
ing the face. This feature vector incorporates the spatial information and the co-occurrence
statistics on frequency and orientation domains of Riesz transform, thus is more effective for
face representation.

Our new feature contains the 1st-order and 2nd-order Riesz components, thus our fea-
tures are of high dimensionality. Using high dimensional features makes the descriptor
matching process slow, and always includes the risk of over-fitting. In order to obtain a more
discriminant and low-dimensional facial representation, we use Locality Preserving Projec-
tion [14] to project the features to a low-dimensional space. In the case of face analysis,
principal components having high variance might not necessarily contain the discriminant
information, so we process all principal components using square-roots of their correspond-
ing eigenvalues. This action can reduce the influence of leading principal components while
increase the influence of trailing components. Once we can obtain feature space U, the
low-dimensional features can be formulated as F̃ = U′F .

3 A Novel Group Expression Model
A group expression model aims to explore the relationship between faces and intensity label
in a group image. Recently, continuous conditional random fields has been proposed to
model the relation between objects and ranking score [27] and the affect continuously in
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Figure 2: GEMCCRF : The blue circle on a facial image represents the extracted content
(including local and global attributes), zi is an happiness intensity label, an edge (a solid

line) between zi and z j, e.g. g2,5, means the dependency between intensities of two faces, an
edge (a dash line), e.g. f5, represents the dependency of an intensity label on its content.

emotion tracking [18]. It is found that CCRF is suitable to model the relationship between
faces and intensity label, since faces and intensity label can be equivalent to objects and
ranking score, respectively. On the other hand, Dhall et al. [7] emphasised that the top-
down component (i.e. global attributes) and the bottom-up component (i.e. local attributes)
are very important for a group expression model. Inspired by [7, 18, 27], we formulate a
new group expression model based on CCRF (GEMCCRF ) for combining global and local
attributes.

According to [7], a fully connected graph G = (V,E) is constructed to map the global
structure of faces in a group G. Here, Vi represents the i-th face in the group and an edge Ei, j
represents the link between two faces Vi and Vj. The minimal spanning tree algorithm [26]
is employed to obtain the graph G, which can provide the location and minimally connected
neighbours of a face. Finally, the global attribute can be expressed by the relative size and
relative distance as follows:

(1) Relative size: For a face Vi in the group, its size is taken as the distance between
the locations li and ri of the left and right eyes, di =‖ li− ri ‖, where li and ri are obtained
from facial landmarks by using [9]. The relative face size Si of Vi is given by Si =

di

di+∑
n
j=1

d j
n

,

where n is the number of connected neighbours of Vi.
(2) Relative distance: Based on the nose tip locations pi of all faces in a group G,

the centroid cg of G is computed. The relative distance δi of the i-th face is described as
δi =‖ pi− cg ‖, and δi is further normalised based on the mean relative distance.

On the other hand, a local attribute is also important for a group expression model. In
this work, the local attribute contains the local features F̃ for faces, for example, extracted
by RVLBP (in Section 2). Global and local attributes are concatenated into F = [F̃ ,S,δ ],
providing sufficient and useful information for the CCRF.

The CCRF model is defined as a conditional probability distribution over ranking scores
of objects conditioned on the objects. We suppose that a group image contains n faces,
which is represented by Fi, i = 1, . . . ,n. According to [18], we transform Fi into ti by using
SVR [3], which represents the relevance factor of one subject for the CCRF. Therefore, the
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CCRF model for a group image is a conditional probability distribution with the probability
density function:

P(z | T) = exp(Π)∫
exp(Π)dz

, (9)

Π =
n

∑
i=1

m

∑
k=1

µk fk(zi,Ti,k)+∑
i, j

νg(zi,z j,T), (10)

where T = {t1, . . . , tn} ∈Rm is the set of input feature vector, Z = {z1, . . . ,zn} is the intensity
label of faces in a group image, f (.) and g(.) are vertex and edge features, respectively.

Following the convention of [27], we employ fk(zi,Ti,k) =−(zi−Ti,k)
2 for representing

the dependency between Ti,k and zi. The larger fk is, the more dependent Ti,k and zi are. We
also used g(zi,z j,T) =− 1

2Wi, j(zi−z j)
2 for expressing the dependency between intensities zi

and z j, where Wi, j is the weight between two faces Vi and Vj, defined as exp( ‖Fi−F j‖
σ

). The
edge feature g represents how related the intensity label of two faces Vi and Vj is. The CCRF
model for group happiness intensity analysis is depicted in Fig. 2.

It is very important to estimate the parameters µ and ν in Eq. 10. Following the work
of [18], we pick µ and ν that maximise the conditional log-likelihood as:

(µ∗,ν∗) = argmax
µ,ν

M

∑
q=1

logP(z(q)|T(q)), (11)

where M expresses the number of group images. Since this problem is convex, the optimiza-
tion procedure can be solved by using stochastic gradient ascent.

Since the CCRF model can be seen as a multivariate Gaussian, it is straightforward to
infer happiness intensities z for all faces in a group using maximizing P(z|T). Given a group
image, containing n faces, the intensity can be estimated by using 1

n ∑
n
i=1 argmaxzi P(zi|Ttest).

4 Experiment
As previously mentioned, our proposed method includes a new facial expression descriptor
(RVLBP) and a group expression model (GEMCCRF ). Since the HAPPEI database [7] is
the only database for group happiness intensity analysis, we apply the following strategy
for analyzing our proposed methods. Firstly, we examine the performance of the RVLBP
descriptor on three challenging face databases [5, 7, 32] in Section 4.1. Secondly, we conduct
the experiment on the HAPPEI database [7] for evaluating GEMCCRF in Section 4.2.

4.1 Feature Evaluation
In order to evaluate the performance of the RVLBP descriptor, we conduct experiments on
the SFEW [5], GENKI-4K [32] and HAPPEI [7] databases, for the task of facial expression
recognition in the wild, smile detection and happiness intensity estimation, respectively.

(1) Based on [5], the experiments on the SFEW database follow the strictly person
independent strategy protocol (i.e. the train and test set have no common subjects). An
Support Vector Machine (SVM) with linear kernel [3] is utilized to classify seven facial
expressions (anger, disgust, fear, happiness, neutral, sadness and surprise). The final result
is the average of the two sets.

(2) For the GENKI-4K database, a 5-fold cross validation protocol is followed. We com-
pare the performance by using the Area Under the Curve (AUC) and the average accuracy
metrics. An SVM with linear kernel [3] is utilized for classyfying smile vs no smile.

(3) For the HAPPEI database, 2,000 images are chosen in our case, including a total
of 7,490 faces. All faces are labeled into six mood intensity levels (0-5). We perform the

Citation
Citation
{Qin, Liu, Zhang, Wang, and Li} 2008

Citation
Citation
{Imbrsaitunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {eglobal mathchardef accent@spacefactor spacefactor }accent 10 eegroup spacefactor accent@spacefactor , Baltru²aitis, and Robinson} 2013

Citation
Citation
{Dhall, Goecke, and Gedeon} 2015{}

Citation
Citation
{Dhall, Goecke, Lucey, and Gedeon} 2011

Citation
Citation
{Dhall, Goecke, and Gedeon} 2015{}

Citation
Citation
{Theprotect unhbox voidb@x penalty @M  {}{MPL}ab {GENKI}protect unhbox voidb@x penalty @M  {}Database} 

Citation
Citation
{Dhall, Goecke, and Gedeon} 2015{}

Citation
Citation
{Dhall, Goecke, Lucey, and Gedeon} 2011

Citation
Citation
{Theprotect unhbox voidb@x penalty @M  {}{MPL}ab {GENKI}protect unhbox voidb@x penalty @M  {}Database} 

Citation
Citation
{Dhall, Goecke, and Gedeon} 2015{}

Citation
Citation
{Dhall, Goecke, Lucey, and Gedeon} 2011

Citation
Citation
{Chang and Lin} 2011

Citation
Citation
{Chang and Lin} 2011



8 X. HUANG: RIESZ-BASED VOLUME LOCAL BINARY PATTERN

Table 1: Performance comparison on SFEW, GENKI-4K and HAPPEI databases, where *
represents our implementation of an algorithm on the database.

Methods SFEW GENKI-4K HAPPEI
Execution time (second)

Accuracy AUC Accuracy MAE
LBP* [23] 21.56% 0.9132 91.35% 0.8013 0.0768
HOG* [4] 20.54% 0.8629 86.32% 0.8509 0.1735
LPQ* [24] 26.17% 0.8856 88.67% 0.7808 0.3775
CLBP* [13] 22.85% 0.9069 90.72% 0.8198 0.0368
MonoLBP* [33] 25.58% 0.8814 88.22% 0.9198 0.0898
GV-LBP-TOP* [20] 24.26% 0.8882 88.92% 0.7870 8.48
HOG+LPQ [5] 19% - - - -
AUDN [22] 26.14% - - - -
HOG+ELM [1] - 0.946 88.2% - -
BPD [29] - - 89.7% - -
Proposed RVLBP 29.84% 0.9248 92.52% 0.7688 0.5639

experiments by using a 4-fold cross validation protocol, in which faces from 1,500 images
are chosen as training and the rest for testing, repeating 4 times. Kernel Partial Least Square
regression [28] is employed to estimate the intensity of happiness. The Mean Absolute Error
(MAE) is calculated for all comparisons.

For localising the facial parts in the images of the three databases, we use the work in [9]
to detect the nine facial landmarks, which describes the center point of the nose, the left and
right corners of both eyes, the left and right corners of the nostrils, and the left and right
corners of the mouth. For aligning the faces, an affine transform is applied. The faces are
cropped to 128×128 pixel size. For a fair comparison, we compare RVLBP with LBP [23],
HOG [4], Local Phase Quantization (LPQ) [24], Completed LBP (CLBP) [13], Monogenic
LBP (MonoLBP) [33], and GV-LBP-TOP [20] on three databases. For all methods except
HOG, we divide a facial image into 8×8 blocks. For LBP, CLBP, MonoLBP and GV-LBP-
TOP, radius and the number of neighbours are set to 3 and 8, respectively. For GV-LBP-
TOP, 40 Gabor faces are used. For HOG, pyramid level and bin count are set to 3 and 16,
respectively. Tab. 1 shows the results of all approaches and the state of art on the three
databases.

As seen in Tab. 1, for the SFEW database, the LPQ descriptor achieves a classification
accuracy rate of 26.17% on the baseline algorithms, while our proposed method yields an
accuracy of 29.84%, which is highest among all the methods. This can be explained due to
the application of a higher-order Riesz transform, which increases the discriminative power
of the final feature descriptor. Furthermore, we also compare the results of the state of the
art [22], in which they produced 26.14% by using an AU-aware deep network. It is seen that
our method outperforms AUDN.

Subsequently, for the GENKI-4K database, we can see from Tab. 1 that LBP performs
better than HOG, MonoLBP and LPQ on average AUC and accuracy. Compared with LBP,
RVLBP performs better by an absolute margin of 1.17% and 0.0116 for accuracy and AUC,
respectively. We further compare our descriptor RVLBP with two other descriptors, the re-
sults compared in this paper are taken from [1, 29]. It can be seen that RVLP performs better
in terms of accuracy while a little less than [1] in terms of AUC. Lastly, for the HAPPEI
database, as seen from Tab. 1, LPQ achieves the lowest MAE of 0.7808 among the baseline
methods. Comparing with LPQ, the MAE of RVLBP is decreased to 0.7688. This demon-
strates that RVLBP achieves promising performance on the task of facial expression intensity
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Table 2: Comparison of various GEM approaches with three features (Mean absolute error).

Models Feature
HOG LBP LPQ RVLBP

GEMavg 0.6062 0.5824 0.5738 0.5622
GEMw 0.6069 0.5695 0.5665 0.5469
GEMLDA 0.6019 0.5542 0.5591 0.5407
GEMCCRF 0.5815 0.5347 0.5399 0.5292

estimation as well.
Furthermore, we compare these facial descriptors on the basis of their computational

complexity. Matlab R2013 based code is computed on an Intel i5-2400 processor at 3.10
GHz. The execution times are reported in Tab. 1. It is found that the proposed descriptor
costs more than other descriptors except GV-LBP-TOP. The reason for longer execution
time for RVLBP is the computation time spent in the pre-processing of an image based on
the Riesz transform. However, this computation complexity for RVLBP is still acceptable
for real-time applications and can be improved using trivial parallelization.

Overall, our RVLBP features result in better accuracy than LBP and its variants on three
databases. We argue that this is due to the ability of the Riesz transform in providing an
intrinsic dimensional structure to the features.

4.2 Comparison of GEM

It is noted that few studies have investigated group-level affect recognition. In this section,
our GEMCCRF is evaluated on the HAPPEI database [7], in which the images are annotated
with the group level mood intensity (‘neutral’ to ‘thrilled’). In the experiments, we employ a
4-fold-cross-validation protocol, where 1,500 images are used for training and 500 for test-
ing, repeating 4 times. For comparing our GEM model, we choose classical GEM (GEMavg),
weighted GEM (GEMw) and Latent Dirichlet Allocation based GEM (GEMLDA). For more
details, refer to [7]. Among them, the global parameters α and β are 0.1 and 0.9, respec-
tively. According to Tab. 1 and [7], we choose HOG, LBP, LPQ and RVLBP for all GEM
models.

Tab. 2 shows the mean absolute errors of all GEM approaches. As seen from this table,
RVLBP obtains promising results on all GEM models. While we use the RVLBP feature on
GEMavg, comparing with HOG, LBP and LPQ, the MAE is decreased by 0.044, 0.0202 and
0.0116, respectively. Similar results are obtained for the two other GEM models. Moreover,
we find that RVLBP achieves the best performance on all GEM models, followed closely
by LPQ and LBP, and more distantly by HOG. This is the same to our findings previously
mentioned in Section 4.1. These results demonstrate that a suitable feature can boost the
performance for all GEM models.

Based on RVLBP, we further examine the performance of various GEM models. The
results are reported as 0.5622, 0.5469, 0.5407, and 0.5292 for GEMavg, GEMw, GEMLDA
and GEMCCRF , respectively. For GEMw, comparing with GEMavg, it is found that the global
attributes can improve the performance for happiness intensity estimation. Moreover, it is
found that GEMLDA considerably makes MAE lower than GEMw, since GEMLDA further
considers the local attributes in the topic model. It demonstrates that the combination of local
and global attributes can improve the performance of group happiness intensity estimation.

It is observed that GEMLDA and our proposed model both consider the local and global
attributes, but our model (GEMCCRF ) decreased the MAE to 0.5292, while GEMLDA to
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(a) (b)
Figure 3: Two group images from the HAPPEI database, and their estimated happiness

intensities using GEMavg, GEMw, GEMLDA and GEMCCRF . For each image, the texts at the
bottom of the image indicate the estimated happiness intensity results and the ground truth,

respectively

0.5407. It shows that our method outperforms GEMLDA. This is explained by GEMLDA
using k-means to produce the bag-of-word model, which can reduce the contribution of lo-
cal features to GEM; while our model emphasizes the role of local attributes. The results
demonstrate that using CCRF is an effective way to build the relationship among subjects in
a group.

5 Conclusion

To advance affective computing research, it is indeed of interest to understand and model the
affect exhibited by a group of people in images. In this paper, a novel framework has been
presented to analyse affect of group of people in an image. Firstly, in order to increase the
robustness of recognition, we investigate the higher-order Riesz transform, and employ LBP
analysis on the volumes of the 1st-order and the 2nd-order Riesz components. Secondly, we
exploit GEM based on continuous conditional random fields to combine the global and local
attributes for estimating the group mood. The combination of feature descriptor and GEM is
finally presented to infer the intensity of a group of people. Example of two inferred group
images is given in Fig. 3.

We have conducted experiments on three databases to show that the proposed feature
(RVLBP) considerably improves the performance of facial expression recognition, smile de-
tection and happiness intensity estimation. Additionally, we evaluate the proposed GEM
with RVLBP on the HAPPEI database for group happiness intensity estimation. The ex-
periment results show that GEMCCRF results in predicting the perceived group mood more
accurately. In addition, the feature indeed affects the performance of recognition for GEM
models. In future, we will extend the method to different group-level emotions and perform
experiments on the Group Affect database [8].
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