
SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS 1

Data-free Parameter Pruning for
Deep Neural Networks
Suraj Srinivas
surajsrinivas@ssl.serc.iisc.ernet.in

R. Venkatesh Babu
venky@serc.iisc.in

Supercomputer Education and
Research Centre,
Indian Institute of Science,
Bangalore, India

Abstract
Deep Neural nets (NNs) with millions of parameters are at the heart of many state-

of-the-art computer vision systems today. However, recent works have shown that much
smaller models can achieve similar levels of performance. In this work, we address the
problem of pruning parameters in a trained NN model. Instead of removing individual
weights one at a time as done in previous works, we remove one neuron at a time. We
show how similar neurons are redundant, and propose a systematic way to remove them.
Our experiments in pruning the densely connected layers show that we can remove upto
85% of the total parameters in an MNIST-trained network, and about 35% for AlexNet
without significantly affecting performance. Our method can be applied on top of most
networks with a fully connected layer to give a smaller network.

1 Introduction
I have made this letter longer than usual, only because I have not had the time
to make it shorter 1 - Blaise Pascal

Aspiring writers are often given the following advice: produce a first draft, then remove
unnecessary words and shorten phrases whenever possible. Can a similar recipe be followed
while building deep networks? For large-scale tasks like object classification, the general
practice [13, 18, 20] has been to use large networks with powerful regularizers [19]. This
implies that the overall model complexity is much smaller than the number of model param-
eters. A smaller model has the advantage of being faster to evaluate and easier to store - both
of which are crucial for real-time and embedded applications.

Given such a large network, how do we make it smaller? A naive approach would be to
remove weights which are close to zero. However, this intuitive idea does not seem to be
theoretically well-founded. LeCunn et al. proposed Optimal Brain Damage (OBD) [14], a
theoretically sound technique which they showed to work better than the naive approach. A
few years later, Hassibi et al. came up with Optimal Brain Surgeon (OBS) [9], which was
shown to perform much better than OBD, but was much more computationally intensive.
This line of work focusses on pruning unnecessary weights in a trained model.

There has been another line of work in which a smaller network is trained to mimic a
much larger network. Bucila et al. [3] proposed a way to achieve the same - and trained

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Loosly translated from French Pages 31.1-31.12
DOI: https://dx.doi.org/10.5244/C.29.31

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov} 2014

Citation
Citation
{LeCun, Denker, Solla, Howard, and Jackel} 1989

Citation
Citation
{Hassibi, Stork, etprotect unhbox voidb@x penalty @M {}al.} 1993

Citation
Citation
{Bucilua, Caruana, and Niculescu-Mizil} 2006

2 SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS

smaller models which had accuracies similar to larger networks. Ba and Caruna [2] used the
approach to show that shallower (but much wider) models can be trained to perform as well
as deep models. Knowledge Distillation (KD) [10] is a more general approach, of which
Bucila et al.’s is a special case. FitNets [16] use KD at several layers to learn networks
which are deeper but thinner (in contrast to Ba and Caruna’s shallow and wide), and achieve
high levels of compression on trained models.

Many methods have been proposed to train models that are deep, yet have a lower pa-
rameterisation than conventional networks. Collins and Kohli [5] propose a sparsity inducing
regulariser for backpropogation which promotes many weights to have zero magnitude. They
achieve reduction in memory consumption when compared to traditionally trained models.
Denil et al. [6] demonstrate that most of the parameters of a model can be predicted given
only a few parameters. At training time, they learn only a few parameters and predict the
rest. Ciresan et al. [4] train networks with random connectivity, and show that they are more
computationally efficient than densely connected networks.

Some recent works have focussed on using approximations of weight matrices to perform
compression. Jenderberg et al. [11] and Denton et al. [7] use SVD-based low rank approx-
imations of the weight matrix. Gong et al. [8], on the other hand, use a clustering-based
product quantization approach to build an indexing scheme that reduces the space occupied
by the matrix on disk. Unlike the methods discussed previously, these do not need any train-
ing data to perform compression. However, they change the network structure in a way that
prevents operations like fine-tuning to be done easily after compression. One would need to
‘uncompress’ the network, fine-tune and then compress it again.

Similar to the methods discussed in the paragraph above, our pruning method doesn’t
need any training/validation data to perform compression. Unlike these methods, our method
merely prunes parameters, which ensures that the network’s overall structure remains same
- enabling operations like fine-tuning on the fly. The following section explains this in more
detail.

2 Wiring similar neurons together
Given the fact that neural nets have many redundant parameters, how would the weights
configure themselves to express such redundancy? In other words, when can weights be
removed from a neural network, such that the removal has no effect on the net’s accuracy?

Suppose that there are weights which are exactly equal to zero. It is trivial to see that
these can be removed from the network without any effect whatsoever. This was the motiva-
tion for the naive magnitude-based removal approach discussed earlier.

In this work we look at another form of redundancy. Let us consider a toy example of
a NN with a single hidden layer, and a single output neuron. This is shown in figure 1. Let
W1,W2, ... ∈ Rd be vectors of weights (or ‘weight-sets’) which includes the bias terms, and
a1,a2, ... ∈R be scalar weights in the next layer. Let X ∈Rd denote the input, with the bias
term absorbed. The output is given by

z = a1h(W T
1 X)+a2h(W T

2 X)+a3h(W T
3 X)+ ...+anh(W T

n X) (1)

where h(·) is a monotonically increasing non-linearity, such as sigmoid or ReLU.
Now let us suppose that W1 = W2. This means that h(W T

1 X) = h(W T
2 X). Replacing W2

by W1 in (1), we get

Citation
Citation
{Ba and Caruana} 2014

Citation
Citation
{Hinton, Vinyals, and Dean} 2014

Citation
Citation
{Romero, Ballas, Kahou, Chassang, Gatta, and Bengio} 2014

Citation
Citation
{Collins and Kohli} 2014

Citation
Citation
{Denil, Shakibi, Dinh, deprotect unhbox voidb@x penalty @M {}Freitas, etprotect unhbox voidb@x penalty @M {}al.} 2013

Citation
Citation
{Cire{³}an, Meier, Masci, Gambardella, and Schmidhuber} 2011

Citation
Citation
{Jaderberg, Vedaldi, and Zisserman} 2014

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

Citation
Citation
{Gong, Liu, Yang, and Bourdev} 2014

SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS 3

Figure 1: A toy example showing the effect of equal weight-sets (W1 = W4). The circles in
the diagram are neurons and the lines represent weights. Weights of the same colour in the
input layer constitute a weight-set.

z = (a1 +a2)h(W T
1 X)+0 h(W T

2 X)+a3h(W T
3 X)+ ...+anh(W T

n X)

This means whenever two weight sets (W1,W2) are equal, one of them can effectively be
removed. Note that we need to alter the co-efficient a1 to a1+a2 in order to achieve this. We
shall call this the ‘surgery’ step. This reduction also resonates with the well-known Hebbian
principle, which roughly states that “neurons which fire together, wire together”. If we find
neurons that fire together (W1 = W2), we wire them together (a1 = a1 + a2). Hence we see
here that along with single weights being equal to zero, equal weight vectors also contribute
to redundancies in a NN. Note that this approach assumes that the same non-linearity h(·) is
used for all neurons in a layer.

3 The case of dissimilar neurons
Using the intuition presented in the previous section, let us try to formally derive a process
to eliminate neurons in a trained network. We note that two weight sets may never be exactly
equal in a NN. What do we do when ‖W1−W2‖= ‖ε1,2‖ ≥ 0 ? Here εi, j =Wi−Wj ∈Rd .

As in the previous example, let zn be the output neuron when there are n hidden neurons.
Let us consider two similar weight sets Wi and Wj in zn and that we have chosen to remove
Wj to give us zn−1.

We know that the following is true.

zn = a1h(W T
1 X)+ ...+aih(W T

i X)+ ...+a jh(W T
j X)+ ...

zn−1 = a1h(W T
1 X)+ ...+(ai +a j)h(W T

i X)+ ...

If Wi =Wj (or εi, j = 0), we would have zn = zn−1. However, since ‖εi, j‖ ≥ 0, this need
not hold true. Computing the squared difference (zn− zn−1)

2, we have

(zn− zn−1)
2 = a2

j(h(W
T
j X)−h(W T

i X))2 (2)

To perform further simplification, we use the following Lemma.

Lemma 1. Let a,b ∈R and h(·) be a monotonically increasing function,

such that max
(

dh(x)
dx

)
≤ 1,∀x ∈R. Then,

4 SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS

(h(a)−h(b))2 ≤ (a−b)2

The proof for this is provided in the Appendix. Note that non-linearities like sigmoid and
ReLU [13] satisfy the above property. Using the Lemma and (2), we have

(zn− zn−1)
2 ≤ a2

j (ε
T
i, jX)2

This can be further simplified using Cauchy-Schwarz inequality.

(zn− zn−1)
2 ≤ a2

j ‖εi, j‖2
2 ‖X‖2

2

Now, let us take expectation over the random variable X on both sides. Here, X is as-
sumed to belong to the input distribution represented by the training data.

E(zn− zn−1)
2 ≤ a2

j ‖εi, j‖2
2 E‖X‖2

2

Note that E‖X‖2
2 is a scalar quantity, independent of the network architecture. Given the

above expression, we ask which (i, j) pair least changes the output activation. To answer
this, we take minimum over (i, j) on both sides, yielding

min(E(zn− zn−1)
2)≤ min(a2

j ‖εi, j‖2
2) E‖X‖2

2 (3)

To minimize an upper bound on the expected value of the squared difference, we thus
need to find indicies (i, j) such that a2

j ‖εi, j‖2
2 is the least. Note that we need not compute

the value of E‖X‖2
2 to do this - making it dataset independent. Equation (3) takes into

consideration both the naive approach of removing near-zero weights (based on a2
j) and the

approach of removing similar weight sets (based on ‖εi, j‖2
2).

The above analysis was done for the case of a single output neuron. It can be trivially
extended to consider multiple output neurons, giving us the following equation

min(E〈(zn− zn−1)
2〉)≤ min(〈a2

j〉 ‖εi, j‖2
2) E‖X‖2

2 (4)

where 〈·〉 denotes the average of the quantity over all output neurons. This enables us to
apply this method to intermediate layers in a deep network. For convenience, we define the
saliency of two weight-sets in (i, j) as si, j = 〈a2

j〉 ‖εi, j‖2
2.

We elucidate our procedure for neuron removal here:

1. Compute the saliency si, j for all possible values of (i, j). It can be stored as a square
matrix M, with dimension equal to the number of neurons in the layer being consid-
ered.

2. Pick the minimum entry in the matrix. Let it’s indices be (i′, j′). Delete the j′th neuron,
and update ai′ ← ai′ +a j′ .

3. Update M by removing the j′th column and row, and updating the i′th column (to
account for the updated ai′ .)

The most computationally intensive step in the above algorithm is the computation of the
matrix M upfront. Fortunately, this needs to be done only once before the pruning starts, and
only single columns are updated at the end of pruning each neuron.

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS 5

3.1 Connection to Optimal Brain Damage

In the case of toy model considered above, with the constraint that only weights from the
hidden-to-output connection be pruned, let us analyse the OBD approach.

The OBD approach looks to prune those weights which have the least effect on the train-
ing/validation error. In contrast, our approach looks to prune those weights which change
the output neuron activations the least. The saliency term in OBD is s j = h j ja2

j/2, where
hii is the ith diagonal element of the Hessian matrix. The equivalent quantity in our case
is the saliency si, j = a2

j‖εi j‖2
2. Note that both contain a2

j . If the change in training error is
proportional to change in output activation, then both methods are equivalent. However, this
does not seem to hold in general. Hence it is not always necessary that the two approaches
remove the same weights.

In general, OBD removes a single weight at a time, causing it to have a finer control
over weight removal than our method, which removes a set of weights at once. However,
we perform an additional ‘surgery’ step (ai← ai +a j) after each removal, which is missing
in OBD. Moreover, for large networks which use a lot of training data, computation of the
Hessian matrix (required for OBD) is very heavy. Our method provides a way to remove
weights quickly.

3.2 Connection to Knowledge Distillation

Hinton et al. [10] proposed to use the ‘softened’ output probabilities of a learned network
for training a smaller network. They showed that as T → ∞, their procedure converges to
the case of training using output layer neurons (without softmax). This reduces to Bucila et
al.’s [3] method. Given a larger network’s output neurons zl and smaller network’s neurons
zs, they train the smaller network so that (zl− zs)

2 is minimized.
In our case, zl corresponds to zn and zs to zn−1. We minimize an upper bound on

E((zl − zs)
2), whereas KD exactly minimizes (zl − zs)

2 over the training set. Moreover, in
the KD case, the minimization is performed over all weights, whereas in our case it is only
over the output layer neurons. Note that we have the expectation term (and the upper bound)
because our method does not use any training data.

3.3 Weight normalization

In order for our method to work well, we need to ensure that we remove only those weights
for which the RHS of (3) is small. Let Wi = αWj, where α is a positive constant (say 0.9).
Clearly, these two weight sets compute very similar features. However, we may not be able to
eliminate this pair because of the difference in magnitudes. We hence propose to normalise
all weight sets while computing their similarity.

Result 1. For the ReLU non-linearity, defined by max(0, ·), and for any α ∈ R+ and any
x ∈R, we have the following result:

max(0,αx) = α max(0,x)

Using this result, we scale all weight sets (W1,W2, ...) such that their norm is one. The
α factor is multiplied with the corresponding co-efficient in the next layer. This helps us
identify better weight sets to eliminate.

Citation
Citation
{Hinton, Vinyals, and Dean} 2014

Citation
Citation
{Bucilua, Caruana, and Niculescu-Mizil} 2006

6 SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS

3.4 Some heuristics
While the mathematics in the previous section gives us a good way of thinking about the
algorithm, we observed that certain heuristics can improve performance.

The usual practice in neural network training is to train the bias without any weight
decay regularization. This causes the bias weights to have a much higher magnitude than the
non-bias weights. For this reason, we normalize only the non-bias weights. We also make
sure that the similarity measure ε takes ‘sensible-sized’ contributions from both weights and
biases. This is accomplished for fully connected layers as follows.

Let W = [W ′ b], and let W ′(n) correspond to the normalized weights. Rather than using

‖εi, j‖= ‖Wi−Wj‖, we use ‖εi, j‖=
‖W ′(n)i−W ′(n) j‖
‖W ′i +W ′j‖

+
|bi−b j|
|bi +b j|

.

Note that both are measures of similarity between weight sets. We have empirically
found the new similarity measure performs much better than just using differences. We
hypothesize that this could be a tighter upper bound on the quantity E((zn− zn−1)

2).
Similar heuristics can be employed for defining a similarity term for convolutional layers.

In this work, however, we only consider fully connected layers.

4 How many neurons to remove?
One way to use our technique would be to keep removing neurons until the test accuracy
starts going below certain levels. However, this is quite laborious to do for large networks
with multiple layers.

We now ask whether it is possible to somehow determine the number of removals auto-
matically. Is there some indication given by removed weights that tell us when it is time to
stop? To investigate the same, we plot the saliency si, j of the removed neuron as a function
of the order of removal. For example, the earlier pruned neurons would have a low value of
saliency si, j, while the later neurons would have a higher value. The red line in Figure 2(a)
shows the same. We observe that most values are very small, and the neurons at the very end
have comparatively high values. This takes the shape of a distinct exponential-shaped curve
towards the end.

One heuristic would probably be to have the cutoff point near the foot of the exponential
curve. However, is it really justified? To answer the same, we also compute the increase in
test error (from baseline levels) at each stage of removal (given by the blue line). We see that
the error stays constant for the most part, and starts increasing rapidly near the exponential.
Scaled appropriately, the saliency curve could be considered as a proxy for the increase in
test error. However, computing the scale factor needs information about the test error curve.
Instead, we could use the slope of saliency curve to estimate how densely we need to sample
the test error. For example, fewer measurements are needed near the flatter region and more
measurements are needed near the exponential region. This would be a data-driven way to
determine number of neurons to remove.

We also plot the histogram of values of saliency. We see that the foot of the exponential
(saliency ≈ 1.2) corresponds to the mode of the gaussian-like curve (Figure 2(b)). If we
require a data-free way of finding the number of neurons to remove, we simply find the
saliency value of the mode in the histogram and use that as cutoff. Experimentally, we see
that this works well when the baseline accuracy is high to begin with. When it is low, we see
that using this method causes a substantial decrease in accuracy of the resulting classifier.

SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS 7

(a) (b)
Figure 2: (a) Scaled appropriately, the saliency curve closely follows that of increase in
test error ; (b) The histogram of saliency values. The black bar indicates the mode of the
gaussian-like curve.

In this work, we use fractions (0.25, 0.5, etc) of the number given by the above method for
large networks. We choose the best among the different pruned models based on validation
data. A truly data-free method, however, would require us to not use any validation data
to find the number of neurons to prune. Note that only our pruning method is data-free.
The formulation of such a complete data-free method for large networks demands further
investigation.

5 Experiments and Results
In most large scale neural networks [13, 18] , the fully connected layers contain most of
the parameters in the network. As a result, reducing just the fully connected layers would
considerably compress the network. We hence show experiments with only fully connected
layers.

5.1 Comparison with OBS and OBD
Given the fact that Optimal Brain Damage/Surgery methods are very difficult to evaluate for
mid-to-large size networks, we attempted to compare it against our method on a toy prob-
lem. We use the SpamBase dataset [1], which comprises of 4300 datapoints belonging to
two classes, each having 57 dimensional features. We consider a small neural network archi-
tecture - with a single hidden layer composed of 20 neurons. The network used a sigmoidal
non-linearity (rather than ReLU), and was trained using Stochastic Gradient Descent (SGD).
The NNSYSID 2 package was used to conduct these experiments.

Figure 3 is a plot of the test error as a function of the number of neurons removed. A
‘flatter’ curve indicates better performance, as this means that one can remove more weights
for very little increase in test error. We see that our method is able to maintain is low test error
as more weights are removed. The presence of an additional ‘surgery’ step in our method
improves performance when compared to OBD. Figure 4 shows performance of our method
when surgery is not performed. We see that the method breaks down completely in such a
scenario. OBS performs inferior to our method because it presumably prunes away important

2http://www.iau.dtu.dk/research/control/nnsysid.html

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Asuncion and Newman} 2007

8 SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS

Figure 3: Comparison of proposed approach with OBD and OBS. Our method is able to
prune many more weights than OBD/OBS at little or no increase in test error

weights early on - so that any surgery is not able to recover the original performance level.
In addition to this, our method took < 0.1 seconds to run, whereas OBD took 7 minutes
and OBS took > 5 hours. This points to the fact that our method could scale well for large
networks.

Figure 4: Comparison with and without surgery. Our method breaks down when surgery is
not performed. Note that the y-axis is the log of test error.

5.2 Experiments on LeNet
We evaluate our method on the MNIST dataset, using a LeNet-like [15] architecture. This set
of experiments was performed using the Caffe Deep learning framework [12]. The network
consisted of a two 5×5 convolutional layers with 20 and 50 filters, and two fully connected
layers with 500 and 10 (output layer) neurons. Noting the fact that the third layer contains
99% of the total weights, we perform compression only on that layer.

The results are shown in Table 1. We see that our method performs much better than the
naive method of removing weights based on magnitude, as well as random removals - both
of which are data-free techniques.

Our data-driven cutoff selection method predicts a cut-off of 420, for a 1% decrease in
accuracy. The data-free method, on the other hand, predicts a cut-off of 440. We see that
immediately after that point, the performance starts decreasing rapidly.

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, and Darrell} 2014

SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS 9

Neurons pruned Naive method Random removals Ours Compression (%)
150 99.05 98.63 99.09 29.81
300 98.63 97.81 98.98 59.62
400 97.60 92.07 98.47 79.54
420 96.50 91.37 98.35 83.52
440 94.32 89.25 97.99 87.45
450 92.87 86.35 97.55 89.44
470 62.06 69.82 94.18 93.47

Table 1: The numbers represent accuracies in (%) of the models on a test set. ‘Naive method’
refers to removing neurons based on magnitude of weights. The baseline model with 500
neurons had an accuracy of 99.06%. The highlighted values are those predicted for cutoff by
our cut-off selection methods.

5.3 Experiments on AlexNet

For networks like AlexNet [13], we note that there exists two sets of fully connected layers,
rather than one. We observe that pruning a given layer changes the weight-sets for the next
layer. To incorporate this, we first prune weights in earlier layers before pruning weights in
later layers.

For our experiments, we use an AlexNet-like architecture, called CaffeNet, provided
with the Caffe Deep Learning framework. It is very similar to AlexNet, except that the order
of max-pooling and normalization have been interchanged. We use the ILSVRC 2012 [17]
validation set to compute accuracies in the following table.

FC6 pruned # FC7 pruned Accuracy (%) Compression (%) # weights removed
2800 0 48.16 61.17 37M
2100 0 53.76 45.8 27.9M
1400 0 56.08 30.57 18.6M
700 0 57.68 15.28 9.3M
0 2818 49.76 23.5 14.3M
0 2113 54.16 17.6 10.7M
0 1409 56.00 11.8 7.2M
0 704 57.76 5.88 3.5M

1400 2854 44.56 47.88 29.2M
1400 2140 50.72 43.55 26.5M
1400 1427 53.92 39.22 23.9M
1400 713 55.6 34.89 21.27M

Table 2: Compression results for CaffeNet. The first two columns denote the number of
neurons pruned in each of the FC6 and FC7 layers. The validation accuracy of the unpruned
CaffeNet was found to be 57.84%. Note that it has 60.9M weights in total. The numbers in
red denote the best performing models, and those in blue denote the numbers predicted by
our data-free cutoff selection method.

We observe that using fractions (0.25, 0.5, 0.75) of the prediction made by our data-free
method gives us competitive accuracies. We observe that removing as many as 9.3 million
parameters in case of 700 removed neurons in FC6 only reduces the base accuracy by 0.2%.
Our best method was able to remove upto 21.3 million weights, reducing the base accuracy

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

10SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS

by only 2.2%.

6 Conclusion
We proposed a data-free method to perform NN model compression. Our method weakly
relates to both Optimal Brain Damage and a form of Knowledge Distillation. By minimizing
the expected squared difference of logits we were able to avoid using any training data for
model compression. We also observed that the saliency curve has low values in the beginning
and exponentially high values towards the end. This fact was used to decide on the number
of neurons to prune. Our method can be used on top of most existing model architectures, as
long as they contain fully connected layers.

Appendix

Proof of Lemma 1. Given h(·) is monotonically increasing, and max
(

dh(x)
dx

)
≤ 1, ∀ x ∈R.

=⇒ 0 <
dh(x)

dx
≤ 1 =⇒

∫ a

b
0 dx <

∫ a

b
dh(x)≤

∫ a

b
dx =⇒ 0 < h(a)−h(b)≤ a−b

Since both h(a)−h(b)> 0, and a−b > 0, we can square both sides of the inequality.

(h(a)−h(b))2 ≤ (a−b)2

Acknowledgement
We gratefully acknowledge the support of NVIDIA Corporation for the donation of the K40
GPU used for this research.

References
[1] Arthur Asuncion and David Newman. UCI machine learning repository, 2007.

[2] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in
Neural Information Processing Systems, pages 2654–2662, 2014.

[3] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 535–541. ACM, 2006.

[4] Dan C Cireşan, Ueli Meier, Jonathan Masci, Luca M Gambardella, and Jürgen Schmid-
huber. High-performance neural networks for visual object classification. arXiv
preprint arXiv:1102.0183, 2011.

SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS 11

[5] Maxwell D. Collins and Pushmeet Kohli. Memory bounded deep convolutional net-
works. CoRR, abs/1412.1442, 2014. URL http://arxiv.org/abs/1412.
1442.

[6] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting param-
eters in deep learning. In Advances in Neural Information Processing Systems, pages
2148–2156, 2013.

[7] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. In Ad-
vances in Neural Information Processing Systems, pages 1269–1277, 2014.

[8] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convo-
lutional networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[9] Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning:
Optimal brain surgeon. Advances in Neural Information Processing Systems, pages
164–164, 1993.

[10] Geoffrey E Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. In NIPS 2014 Deep Learning Workshop, 2014.

[11] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. In Proceedings of the British Machine
Vision Conference. BMVA Press, 2014.

[12] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105, 2012.

[14] Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel.
Optimal brain damage. In Advances in Neural Information Processing Systems, vol-
ume 2, pages 598–605, 1989.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[16] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014.

[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 2015. doi: 10.1007/s11263-015-0816-y.

[18] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

http://arxiv.org/abs/1412.1442
http://arxiv.org/abs/1412.1442

12SRINIVAS, BABU: DATA-FREE PARAMETER PRUNING FOR DEEP NEURAL NETWORKS

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[20] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2015.

