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Person re-identification refers to the task of recognizing the same per-
son under different non-overlapping camera views and across differen-
t time and places. We propose a novel algorithm coined as Kernelized
View Adaptive Subspace Learning (KVASL), which tries to learn differ-
ent projection matrices for each camera view to compensate for the spe-
cific distortion brought by different views. The kernel trick is adopted to
catch more information such that nonlinear transformation is possible. We
present the motivating example in Figure 1, which not only demonstrates
the benefit of adopting different projection matrices, but also illustrates
the necessity of the kernel trick.

Denote |S|,|D| as the number of matched and mismatched image pairs
in the training set. Our kernelized loss function is formulated as follows:
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where KA = φ(Atrain)
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∈ Rm×N are the matrices formed by

feature vectors in the kernel space of the corresponding camera views,
tr(·) indicates the trace of the matrix and X corresponds to the matrix
whose diagonal elements are all zeros and the other elements are all ones.

We adopt an alternately iterative gradient descent method to optimize
our loss function. The gradients of QA,QB in Eq.(1) can be derived as
follows:
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where X is the same matrix as in Eq.(1). In this case, the matrices to be
learned can be updated in the following way:

QA(t +1) = QA(t)−ηQA
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where ηLA ,ηLB ,ηQA ,ηQB are the learning rate corresponding to each
transform matrix. Once QA,QB are learned, the distance between two test
images can be derived as follows:
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We implement our algorithm on four publicly available datasets, the
comparison results with the baseline method demonstrate the superiori-
ty of view-adaptive projection matrices over using the same projection

(a) (b)
Figure 1: A conceptual illustration of how different projection functions
can be more flexible than the same ones. (a)The same transformation; (b)
Different transformations.

matrices. We also compare our algorithm with some state-of-the-art al-
gorithms ( SVMML [2], KISSME [1], kLFDA [3] et al.), which demon-
strates the effectiveness of our algorithm. Detailed comparison results are
shown in Figure 2 and Table 1.
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Figure 2: (a) Comparison results with the baseline method.(b) Re-
sults on VIPeR dataset.(c) Results on iLIDS dataset.(d) Results on
CAVIAR4REID dataset. Red lines correspond to results of our algorithm.

Method r=1 r=5 r=10 r=15
KISSME [1] 65.51 83.67 87.34 89.59
Our Linear Kernel 78.77 88.63 90.41 92.60
Our RBF Kernel 70.55 85.75 89.45 91.23

Table 1: Comparison of our algorithm with [1] on the ETHZ dataset.
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