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Abstract

Existing spatial matching methods permit geometrically-stable image matching, but
still involve a difficult trade-off between flexibility and discriminative power. To address
this issue, we regard spatial matching as an ensemble of geometric relations on a set of
feature correspondences. A geometric relation is defined as a set of pairs of correspon-
dences, in which every correspondence is associated with every other correspondence if
and only if the pair satisfy a given geometric constraint. We design a novel, unified col-
lection of weak geometric relations that fall into four fundamental classes of geometric
coherences in terms of both spatial contexts and between-image transformations. The
spatial similarity reduces to the cardinality of the conjunction of all geometric relations.
The flexibility of weak geometric relations makes our method robust as regards incorrect
rejections of true correspondences, and the conjunctive ensemble provides a high dis-
criminative power in terms of mismatches. Extensive experiments are conducted on five
datasets. Besides significant performance gain, our method yields much better scalability
than existing methods, and so can be easily integrated into any image retrieval process.

1 Introduction

Local feature-based image encoding [22, 23] has been shown to be successful in particular
object retrieval. However, the direct matching of local features (hereafter features) [13, 14]
leads to massive mismatches because they do not offer sufficient discriminative power. Spa-
tial matching methods including RANSAC [1, 17, 18], Hough transform [4, 10] and spatial
context methods [12, 24] were used to address this issue. In these methods, true correspon-
dences are identified by imposing a constraint on one or two classes of geometric coherences,
e.g. in terms of spatial contexts or between-image transformations. These methods are po-
tentially less discriminative due to the limited number of coherence classes [10, 29], while
forcibly enhancing the strength of constraints leads to the incorrect rejection of true cor-
respondences [4]. Spatial matching still faces a difficult trade-off between flexibility and
discriminative power. This constitutes the main problem we handle in this paper.

We aim at robust and fast spatial matching for the retrieval of near-rigid objects. We
characterize spatial matching as an ensemble of geometric relations on the set of feature
correspondences. A correspondence (Fig. 1(a)) is a pair of features detected from two images
and located in immediate proximity to each other in a descriptor space. A geometric relation
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Figure 1: Example of correspondence pair and fundamental classes of geometric coherences.
(b) The smallest discs containing the k-NN of each correspondence are shown as open circles.
(c)(d)(f) The scales and orientations of and the distances between the correspondences are
shown as open circles, arrows and heavy black lines, respectively. (e) Correspondences are
normalized in terms of the scale, orientation and coordinates of the magenta correspondence.
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(b) Query (left) and top-five results returned by our method.

Figure 2: Comparison of Hough pyramid matching [4] and our method. The green and red
colors of the upper-left corners of the images indicate positive and negative results, respec-
tively. Correspondences identified by the methods are highlighted in colors.

is a set of pairs of correspondences, in which every correspondence is associated with every
other correspondence if and only if the pair satisfy a given geometric constraint. We design
a novel, unified collection of multiple weak geometric relations. The relations fall into four
fundamental classes of geometric coherences (Figures 1(b)-1(d) and 1(f)), which take both
spatial contexts and between-image transformations into consideration. By a weak geometric
relation, we mean a sufficiently flexible constraint which, nevertheless, may offer only a
limited discriminative power. Our goal is to define such relations and to integrate them into
a single strong constraint that is well-correlated with the true similarity (Fig. 2).

It is important to note that our method is not based on Hough transform. In contrast to
Hough transform-based methods [4, 21] that target at single correspondences in a Hough
space, our method directly identifies a set of pairs of correspondences on the basis of care-
fully designed geometric conditions. Since it does not rely on voting, our method sponta-
neously avoids the common issue of quantization errors in a Hough transform.
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2 Related Research

Spatial matching methods [11, 16, 27, 28, 29, 30] can be categorized as prior or posterior:
the former category, corresponding to spatial context methods, improves the discriminative
power by embedding geometric information in indexing before matching; the latter rejects
mismatches online. As an example of spatial context methods, Liu et al. [12] explored the
co-occurrence and relative positions of nearby features, and embedded this information in
an inverted index for fast spatial matching. Wu and Kashino [26] extended this method to
handle anisotropic transformations. Tolias et al.’s method [24] serves as an alternative to Liu
et al.’s method [12], in which each feature is described by a spatial histogram of the relative
positions of all other features. Spatial context methods are limited to a reduced accuracy due
to quantization of geometric information and has high index space requirements. Posterior
matching is the factual solution of choice, where RANSAC and Hough transform dominate.

Exploiting the local shapes of features (e.g. scale, orientation, coordinates) to extrapo-
late between-image transformations, it is either possible to construct RANSAC hypotheses
by single correspondences, or to see correspondences as votes in a transformation space.
RANSAC [18] repeatedly computes an affine transformation, called a hypothesis, from each
correspondence. All hypotheses are verified by counting the inlier correspondences that in-
versely fit the transformation. Perdoch et al. [17] proposed approximating RANSAC by
vector-quantizing the shapes of features for less memory usage and less online complex-
ity. Arandjelovic and Zisserman [1] used epipolar constraints for RANSAC-based spatial
matching. However, RANSAC is known to perform poorly when the percentage of inliers
falls much below 50%, e.g. when it comes to the retrieval of small objects. Meanwhile,
Jegou et al. [10] used a weak geometric model realized with a 2D Hough transform whereby
correspondences are determined as true correspondences if they agree in terms of scaling
and, independently, in terms of rotation factor. Shen et al. [21] proposed uniformly sampling
a fixed number of similarity transformations (hypotheses) from a transformation space. All
hypotheses are verified in another 2D Hough space spanned by the normalized central co-
ordinates of the common object. Avrithis and Tolias [4] followed the conventional practice
of exploiting the shapes of features [10, 18]. The method explores a 4D Hough space of
complete transformations including scaling, rotation and translation. The key contribution
is an elegant pyramid model that distributes correspondences over a hierarchical partition
of the transformation space and increases robustness as regards errors in feature detection.
Despite exhausting efforts, Hough transform remains sensitive to noise generated during
transformation estimation and quantization.

3 Ensemble of Weak Geometric Relations

3.1 Preliminaries

An image is represented by a set P of features. For each feature p € P we are given its visual
word u(p), position t(p) = [x(p) y(p)]", scale 6(p) and orientation R(p). The geometries
can be obtained from an affine covariant feature detector [14, 17] and u(p) by vector quanti-
zation in a descriptor space [18, 22]. p can be mapped, from a unit circle heading a reference
orientation, by a 3 x 3 transformation matrix F(p):

F(p) = m(%’ ) )] M)
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where M(p) = o(p)R(p) is a linear transformation and homogeneous coordinates are to be
used for the mapping. If 6(p) is given by a real scalar, F(p) specifies a similarity transfor-
mation. R(p) is an orthogonal 2 x 2 matrix with detR(p) = 1, represented by an angle 6(p).
Given two images P and Q, a correspondence ¢ = (p, q) is a pair of features p € P and g € Q
with u(p) = u(q). We assume |C| > 2 with C = {c} and:

¢ = (u(c),t(p),o(p),6(p),t(q),0(q),6(q))- 2

3.2 Problem Formulation

Suppose that P and Q are related as regards a common near-rigid object and an unknown
(geometric) transformation F. It can be inferred that all parts of the object obey the same
transformation. Therefore, given a correspondence set C constructed from P and Q, there is a
subset Cy C C of correspondences that lie inside the object and show considerable similarity
in terms of their local transformations. These local transformations must be close to F.
Spatial matching is then to identify such a subset, whose cardinality provides evidence for
the belief that P and Q include the same object.

We focus on the Cartesian product C?> = C x C, i.e. the set of all ordered pairs (cq4,cp)
where c,, ¢, € C. A constraint function /2 : C2 — {0, 1} is defined, which maps any arbitrary
(ca,cp) to one if a given geometric constraint is satisfied, and zero otherwise. A geometric
relation G is thus a subset of C? such that ¥(c,, c) € G, h(cq,cp) = 1. If his sufficiently well-
defined and if the geometries in Eq. 2 are accurately given, we have G ~ CI%. Accordingly,
the spatial similarity can be formulated by the cardinality of G instead of that of Cf.

Instead of a single constraint 4, we build a set H = {h} of weak geometric constraints,
resulting in a set G = {G} of geometric relations. Each & € H should be flexible as regards
feature detection errors, but is allowed to offer a limited discriminative power. A conjunctive
ensemble of such relations (Eq. 3) creates a single strong constraint that is expected to be
highly discriminating in terms of mismatches. The spatial similarity thus becomes |G|

G:ﬂG:{ca,cb ec? (Hhca,cb>:1} 3)
heH

Geg
We focus on four fundamental classes of geometric coherence. The classes derive five weak
geometric constraints as defined in Equations 4, 7, 8, 10 and 12, respectively.

3.3 Weak Geometric Relations

3.3.1 Neighborhood Coherence

Since true correspondences lie inside the object (no larger than the image), correspondences
with a large gap in an image space are more likely to be mismatches. This observation en-
courages us to employ a spatial neighborhood constraint. Given a feature p, let its k-nearest
neighbors (k-NNs) be AMi(p). The constraint (our first constraint) can thus be described as:

i (Caren) = [ (Pa € Np)) A (po € Ni(pa) A (0 € Nian) A (a5 € Nilaa)] - @)

where the square brackets are Iverson brackets. An example of a 40-NN coherence is shown
in Fig. 1(b). In addition to a fair discriminative power, the use of Eq. 4 offers a great advan-
tage in efficiency. By disregarding pairs of non-adjacent correspondences, the complexity of
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all subsequent processes can be reduced from O(|C?|) to O(min(|C|,k)|C|) < O(k|C|). Our
method thus operates in linear time in |C| for a fixed k. As for the k-NN search, we use a
randomized KD-tree [15], whose complexity is no more than O(k|C|log|C|). These com-
plexities do not contradict the discussion in Section 3.2 where we focused on the Cartesian
product C? = C x C. The computation of our method is dominated by O(k|C|) in the worst
case because the k-NN search is much faster than geometric verifications.

Note that some spatial context methods, e.g. Liu et al.’s method [12] and Wu and Ka-
shino’s method [26], imposed the same constraint on pairs of features (rather than pairs of
correspondences) before matching. Since in most cases features are more than 10 times
larger than correspondences, these methods require much larger memory and search spaces
than our method given the same k.

3.3.2 Scaling Coherence

Given ¢ = (p,q), a transformation from ¢ to p is given by F(c) = F(p)F(q)~!. It consists of
a linear transformation M(c) = o(c)R(c) and a translation t(c) = t(p) — M(c)t(g). Scaling
and rotation transformations are 6(c) = 6(p)/c(q) and R(c) = R(p)R(g) ', respectively.
True correspondences should show considerable similarity in terms of their local transforma-
tions F(c). This encourages us to employ a scaling and a rotation (Section 3.3.3) constraints.
The scaling constraint can be represented by |log(c(c,)) —log(o(cp))| < €5 Where €5 €
R is a threshold. To minimize the sensitivity to parameters, we approximate this constraint
by imposing two weaker constraints on scale inequalities. In particular, Equations 5 and 6
define the two constraints in terms of an intra-image h; and a between-image A/, scaling.

Ho(caren) = | (0(pa) > 0(pn) = (0(au) > o(an) | )
Hg(caren) = | (0(pa) > 0(a0)) = (0(ps) > o(an) | (©)

The overall scaling constraint (our second constraint) is given by:
ho(Casch) = hg(cascp) V g (cascp).- )

An example of scaling coherence is shown in Fig. 1(c). We can find two minor yet similar
intra-image enlargements (with a scaling factor of 1.04) from magenta to cyan correspon-
dences. Two similar between-image enlargements from right to left can also be observed.

3.3.3 Rotation Coherence

Similar to the scaling, a rotation coherence (our third constraint) can be represented by:
ho(cascp) = [ye(ca)—e(cb)\ <se] @)

where 0(c) = 6(p) — 0(g). An example of rotation coherence is shown in Fig. 1(d). Both
magenta and cyan features are rotated, from right to left, by an anticlockwise angle of 32.7°.
3.3.4 Relative Position Coherence

If a given ¢, is a true correspondence, its local transformation F(c,) should be identical to the
transformation F between P and Q. Consequently, P and Q should have the same appearance
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if we regard ¢, as a reference and normalize the images in terms of F(p,) and F(g,). Also,
the spatial layout of ¢, and any other true correspondence ¢, should be consistent across P
and Q after normalization. This relative position coherence is perfectly reflected in Figures
1(e) and 1(f) where the magenta correspondence serves as the reference.

Given p, and py, let Eq. 9 define the relative position vector heading from p, to pp.

V(polpa) =M(pa) " (t(ps) — t(pa)) )

The relative position coherence (our fourth constraint) can thus be represented by:

hy(ca,cp) = [maX(HV(prPa) _V(qua)szHv(pa‘pb)_v(%mb)Hz) < 8v]~ (10)

The reason of using maximum pooling instead of sum pooling is to effectively reject mis-
matches that occasionally satisfy either of the asymmetric constraints in Eq. 10. Equation 10
serves as the first constraint of the relative position coherence used in our method.

In addition, we project the relative position vector onto a polar space and impose another
constraint on radius and polar angle inequalities:

taterles) = | ((0(palp) > 1) = (p(aslan) > 1)) A (10(pslpa) ~ 0(anian)] <en)| D)

where p and 6 are the radius and polar angle of v, and &g is the same as in Eq. 8. p(pp|pas) >
1 equals |[t(pp) —t(pa)|l2 > 0(pa). Equation 11 is an asymmetric constraint. Combining
Eq. 11 and its counterpart gives our fifth (symmetric) geometric constraint:

By (Cascp) = hy(cplca) V by (calcp). (12)

Equation 12 serves as the second constraint of the relative position coherence.

Note that no mention has yet been made of the between-image translation. In this study,
we do not directly impose any constraint on the translation coherence because it has been
well incorporated in Eq. 10 (see the supplementary material for more detail).

3.4 Discussion

Our geometric constraint collection now becomes H = {hpr,hs, hg, hy, 1, }. Given a corre-
spondence set C, our method finds the k-NNs of each ¢ € C in the image space. Each pair
of neighboring correspondences is then verified via the other constraints and assigned an
integer in {0, 1} according to whether or not the constraints hold. The spatial similarity is
computed on the basis of Eq. 3, and then combined with a non-spatial similarity:

IGl+1 if |G| #0

S'(P,Q) else. (13)

S(RQ)={

where S(P,Q) is the overall similarity and S'(P,Q) € [0,1] the non-spatial similarity. We
use the cosine similarity between TF-IDF histograms [22] as S'(P, Q), but any local feature-
based similarity [3, 23] can be used here. Equation 13 is the equivalent of first ranking the
results according to |G| and then ranking those with zero similarities via §' (P, Q).

The four classes of geometric coherences are fundamental in the sense that most spatial
matching methods are based on one or two of these classes. RANSAC [17, 18] treats a cor-
respondence ¢, as an inlier to a geometric model M(c,) if (¢4, cp) satisfies a relative position
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Table 1: Dataset comparison .

Dataset Category #Q #1 #VW Detector Descriptor
OB [18] Building 55 5.1K IM Perdoch et al. [17] R-SIFT [2]
Paris [19] Building 55 6.4K M Perdoch et al. [17] R-SIFT [2]
FL32 [20] Logo 960 43K IM Mikolajczyk and Schmid [14] R-SIFT [2]
Holiday [8] Scenery 500 1.5K 200K Mikolajczyk and Schmid [14] SIFT [13]
F100K [18] Distractor n/a 100K M Perdoch et al. [17] R-SIFT [2]

1 #Q, #I and #VW are the numbers of queries, images and visual words, respectively. R-SIFT stands for Root SIFT.

k ) /7 | 3 N
: 75 HE -— 66 - 66 |
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(a) OB [18] (b) Paris [19] (c) FL32[20] (d) Holiday [8]

Figure 3: Relationship between MAP (y-axis) and k (x-axis) used in k-NN. The curves shown
in red, blue, green and purple are obtained with &g € {7,"/2,%/4,%/3}, respectively. & = 5.

constraint; Jegou et al.’s method [10] is a disjunction of scaling and rotation constraints; Liu
et al.’s method [12] and Wu and Kashino’s method [26] are a conjunction of Equations 4 and
12. More detail on the theoretical relation between current spatial matching methods and our
method is given in the supplementary material.

4 Experiments

4.1 Dataset

We tested our method on five datasets: Oxford Buildings (OB) [18], Paris [19], Flickr Logos
32 (FL32) [20], Holiday [8] and Flickr 100K (F100K) [18], which are compared in Table 1.
For OB, Paris and F100K, we conformed to a widely-used configuration [4, 21] that assumed
the datasets include no rotated images. For such datasets, we switched off rotation for feature
detection and spatial matching. We used the feature set (SIFT [13]) and the visual vocabulary
officially provided by Jegou et al. [8] for the Holiday dataset. For the other datasets, a
visual vocabulary was built for each dataset via approximate k-means [18]. For instance,
the vocabulary of the Paris dataset was trained on Paris itself. We measured the accuracy
via mean average precision (MAP) [25]. All methods were implemented in single threads
via C++ on a 3GHz CPU. We measured the memory use in terms of peak resident set size
(PRSS). We excluded the time for feature detection and quantization from the evaluation
since it is independent of the database size.

4.2 Parametric Analysis

We explored the dependence of the performance on the three parameters used in our method.
They are the k used in k&-NN (Eq. 4) and the two thresholds &g € (0,7) and & € R™ used in
Equations 8 and 10, respectively. Figures 3 and 4 show the relationship between the retrieval
performance and k € {10,20,---, 100} with g9 € {7,"/2,%/4,"/3}. We can see that the MAP
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Figure 4: Relationship between €g-averaged search time (y-axis: msec per query and per 1K
images) and k (x-axis) used in k-NN. &, = 5.

Table 2: Performance comparison .

Oxford Buildings [18] Paris [19]
Methods
MAP PRSS Time MAP PRSS Time
BOVW [22] 742 36M .1 710 32M 1
Yang and Newsam [29] 774 15G 72.7 733 13G 59.6
Liuetal. [12] 175 15G 45.8 731 13G 44.7
‘Wu and Kashino [26] 784 8G 69.4 735 9G 79.6
HPM [4] 794 70M 60.2 729 66M 67.3
Our Method 827 69M 19.0 766 66M 20.2
Flickr Logos 32 [20 Holiday [8
Methods 8 (20] y [8]
MAP PRSS Time MAP PRSS Time
BOVW [22] .543 36M 2 547 35M 9
Yang and Newsam [29] .634 10G 58.2 .630 13G 288.6
Liuetal. [12] .653 11G 59.4 .662 13G 269.9
‘Wu and Kashino [26] .675 7G 93.7 .674 8G 438.9
HPM [4] 614 90M 91.6
Our Method .700 90M 42.2 714 203M 745.1

! All PRSSs are in increments of bytes per 1K images. All times are in increments of msec per query and per 1K
images. The best performance among spatial matching methods is highlighted in bold.

is highly insensitive to €9 except for Holiday. As discussed in Section 3.3.1, the worst-case
complexity of our method is O(k|C|) and so it is linear in terms of k for a fixed |C|. This
is well reflected in Fig. 4. Searching Holiday was much slower than searching the other
three datasets because the smaller visual vocabulary used for Holiday (Table 1) led to many
more tentative correspondences being required for constraint checking. This also explains
the exception of the €g-sensitivity of our method for this dataset. We also compared MAPs
obtained with various &, € {5,10, 15,20}, and the best MAP was achieved with &, = 5 for all
datasets. Instead of performing dataset-dependent tuning, we chose {k, &g, &} = {40,%/3,5}
for all subsequent evaluations and for all datasets.

4.3 Evaluation and Comparison

We compared our method with the bag-of-visual-words (BOVW) method [22], three prior
(spatial context) methods [12, 26, 29] and a posterior method called Hough pyramid match-
ing (HPM) [4]. Other methods such as RANSAC [18] and Jegou et al.’s method [10] were
not tested because they were reported to underperform HPM [4]. Table 2 compares the per-
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formance obtained with various methods. Note that the results shown here were obtained
with our own re-implementations for all competing methods. The highest MAPs were ob-
tained with k = 100 for the k-NN used in all prior methods. For HPM, the best performance
stabilized at five levels. The results obtained with the methods compared in Table 2 are
even higher than those, e.g. .789 MAP and 210 msec for HPM (OB), reported in the litera-
ture [4, 26]. This demonstrates the propriety of our implementation.

Our method outperformed all the other methods in terms of accuracy. HPM obtained the
second highest MAPs for OB and Paris, but could not match the others for FL32. This dataset
includes rotated images, and so a full similarity transformation has to be considered '. The
quantization led to 65,536 bins, making the Hough transform used in HPM very sensitive
to feature detection errors. Even if a reasonable balance between flexibility and accuracy
can be expected at the finest level of HPM, it is not guaranteed at coarse levels where the
constraints are much less discriminating in terms of mismatches. Another reason lies in the
small scale of the object (only 5% of the image) in FL32 . An example of a query and the
top-five results returned by HPM and our method are shown in Fig. 2 (see the supplementary
material for more examples).

In Table 2, posterior methods showed much less memory use than prior methods. Pos-
terior methods operate in linear space as regards the number of features |P|, while prior
methods in linear space as regards k|P| with k = 100 being the parameter of k--NN. For HPM
and our method, it is possible to process 1M images (up to 90GB) in a single thread via a
CPU with 128GB memory. The large PRSS consumed by our method on Holiday is again
because of the small visual vocabulary and in consequence the large number of tentative
correspondences. This also explains the longer search time (linear in terms of |C|) of our
method compared with prior methods for Holiday. In most cases, posterior methods are even
faster than prior methods, which serves as a counter-example of the hypothesis behind prior
methods [12, 26] (Section 1). The time consumption of prior methods derives from the large
search space k|P| composed of massive redundant features.

In our experiment, HPM suffered from long processing time due to recursive verifications
of a one-one constraint (see Algorithm 2 in Avrithis and Tolias’s paper [4] for more detail).
The issue becomes significant at coarse levels when the Hough space is divided into larger
bins (more verifications per bin). It is true that our method is in linear time not only in the
number of correspondences |C| but also in the number of neighbors k. However, it could
achieve high MAPs with only a small k£ = 40 (Section 4.2). Therefore, HPM appeared to be
slower than our method.

We included the F100K distractor dataset in OB for a larger scale examination. As shown
in Fig. 5, the MAPs degrade gradually as we increase the number of distractors, but it is clear
that the degradation with our method is much smoother than with the others. When all the
distractors were included, we obtained a MAP improvement of 19% over BOVW and of
6% over HPM. Table 3 presents the reported MAPs of spatial matching methods on the OB,
Paris and OB+F100K datasets, where Holiday is not taken into account because its uses in
related works lack coherence. Note that since various detector-descriptor combinations were
used in the related works 2, Table 3 is only a reference for readers who may be interested in
the positioning of our method in the literature. Our method outperforms all methods on all
datasets. Our search time per query and per 1K images was 19.0 msec for OB. The corre-

INote that Avrithis and Tolias [4] and Shen et al. [21] did not assume a full similarity transformation when using
Perdoch et al.’s feature detector [17].

2 All the methods used Hessian affine feature detector [14] except that Perdoch et al. [17] and Shen et al. [21] used
a modified one [17]; all the methods used SIFT [13] except that Arandjelovic and Zisserman [2] used R-SIFT [2].
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o ;i Perdoch et al. [17] 789 n/a 7126
) Shen et al. [21] 752 741 729

o Arandjelovic [2] 720 n/a 642

g? Zhang et al. [30] 713 n/a .604
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Figure 5: MAPs on OB+F100K. Table 3: Reported MAPs.

sponding time reported by Perdoch et al. [17] was 238 msec on 4 cores, and that reported by
Shen et al. [21] was 17.6 msec. This reveals the high competitiveness of our scalability.

5 Conclusion

We have characterized spatial matching as identifying a subset, called a geometric relation,
of the Cartesian product of a correspondence set. This relation is modeled as a conjunctive
ensemble of multiple weak geometric relations, taking both spatial contexts and between-
image transformations into consideration. Our method achieves a better trade-off between
flexibility and discriminative power. Testing using five datasets ranging from 1.5K to 105K
in size demonstrated the great superiority of our method with respect to the state of the art.
Our method can be integrated in a retrieval system with other components such as query ex-
pansion [6, 7] and query adaptation [9, 31] to provide better object and image retrieval. Note
that our method can easily estimate the underlying geometric transformation between im-
ages by identifying the most frequent correspondence in the conjunctive ensemble G (Eq. 3).
The estimate is useful in query expansion, which has been shown to significantly improve
the results. We recognize this as our future subject.
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