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Abstract
We propose a novel method for unsupervised domain adaptation. Traditional ma-

chine learning algorithms often fail to generalize to new input distributions, causing re-
duced accuracy. Domain adaptation attempts to compensate for the performance degra-
dation by transferring and adapting source knowledge to target domain. Existing unsu-
pervised methods project domains into a lower-dimensional space and attempt to align
the subspace bases, effectively learning a mapping from source to target points or vice
versa. However, they fail to take into account the difference of the two distributions in the
subspaces, resulting in misalignment even after adaptation. We present a unified view of
existing subspace mapping based methods and develop a generalized approach that also
aligns the distributions as well as the subspace bases. We provide a detailed evalua-
tion of our approach on benchmark datasets and show improved results over published
approaches.

1 Introduction
Object recognition based on supervised machine learning methods has made great progress
in recent years, with performance on common benchmarks improving at a dramatic pace.
Availability of quality supervised training data has been key to this progress. Unfortunately,
supervised image datasets are inherently biased [20], hampering generalization to novel test
data.

The problem is that machine learning is very different from human learning. While
humans can learn from very few labeled examples in one condition and generalize to novel
conditions, traditional supervised machine learning requires extensive labeled data from each
new condition. For example, a bicycle detector trained only on bicycles against a white back-
ground must relearn from new data to detect bikes in cluttered environments (see Figure 3 for
examples). In this sense, supervised learning is “dumb,” as it only recognizes object images
formed under the same conditions (pose, 3D shape, illumination, etc.) that were present in
its training data.

Both theoretical [2, 3] and practical results [17, 20] show that the generalization error of
supervised methods increases in proportion to the difference between the test and training in-
put distributions. As pointed out by [5], even the state-of-the-art deep CNN features learned
on a large labeled dataset of 1000 objects can only handle the smallest of distribution shifts.
Clearly, addressing this issue is key to making recognition accurate enough to be deployable
in real world applications.
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Figure 1: Existing approaches for domain adaptation via subspace mapping fail to properly
align the source and target distributions. Our proposed Subspace Distribution Alignment
(SDA) approach improves domain alignment by taking the difference of the source and target
distributions into account. (Best viewed in color)

To compensate for the degradation in performance, many domain adaptation algorithms
have been designed [1, 4, 9, 10, 12, 15, 16, 17, 18, 19, 21], with most assuming some labeled
examples in the target to learn the adaptation. In this paper, we focus on the unsupervised
scenario where the target domain is unlabeled, but we have access to the target sample dis-
tribution.

Most of the existing unsupervised approaches have pursued adaptation by separately pro-
jecting the source and target distributions into a lower-dimensional manifold, and finding a
transformation that brings the subspaces closer together. This process is illustrated in Fig-
ure 1. Geodesic methods [9, 10] find a path along the subspace manifold, and either project
source and target onto points along that path [10], or find a closed-form linear map that
projects source points to target [9]. Alternatively, the subspaces can be aligned by comput-
ing the linear map that minimizes the Frobenius norm of the difference between them, a
method known as Subspace Alignment [7].

Intuitively, projecting data into a lower-dimensional subspace removes noisy dimensions
and makes it easier to find the mapping. However, this approach ignores the overall distribu-
tion differences in the subspaces, even though the subspace bases are aligned. As can be seen
in Figure 1, the source and target distributions in the aligned subspace can still be different
due to variance differences among each dimension.

We propose a novel method called Subspace Distribution Alignment (SDA) based on
the observation that aligning the distribution as well as the bases in the subspace may be
beneficial. Our method can be seen as a generalization of the above subspace mapping
based methods. We demonstrate the advantage of SDA, and propose two variants of it that
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generalizes both the Subspace Alignment (SA) [7] and Geodesic Flow Kernel (GFK) [9]
methods. We show that the infinite number of subspaces on the geodesic flow between
source and target subspaces can be “hallucinated” by one “phantom” joint space where the
distribution alignment is very straightforward. We evaluate our approach on standard domain
adaptation benchmarks.

To summarize, our paper makes the following major contributions: (1) we propose a new
method for domain adaptation which outperforms state-of-the-art methods on benchmark
datasets; (2) we unify two state-of-the-art domain adaptation methods in our framework; (3)
we propose a novel view of “hallucinating” infinite number of subspaces in one joint space.

2 Related work
Domain adaptation, or covariate shift, is a fundamental problem in machine learning, and
has attracted a lot of attention in the machine learning and computer vision community,
e.g. [4, 14] (see [13] for a comprehensive overview).

Domain adaptation methods for visual data attempt to learn classifiers on a labeled source
domain and transfer it to a target domain. Early visual adaptation methods were applied to
domain shift in video, including work by Duan et al. [6], who proposed to adapt video
concept classifiers (e.g. person, office) between news videos collected from different news
channels. [16, 17] applied domain adaptation ideas to object category classification in still
images.

There are two settings for visual domain adaptation: (1) unsupervised domain adap-
tation where there are no labeled examples available in the target domain; and (2) semi-
supervised domain adaptation where there are a few labeled examples in the target domain.
Most existing algorithms operate in the semi-superised setting [1, 4, 9, 10, 12, 15, 16, 17, 18,
21]. However, in real world applications, unlabeled target data is often much more abundant
and labeled examples are very limited, so the question of how to utilize the unlabeled target
data is more important for practical visual domain adaptation. Thus, in this paper, we focus
on the unsupervised scenario.

The most related unsupervised approaches to ours are geodesic manifold adaptation [10],
a precursor to Geodesic Flow Kernel (GFK) [9], Subspace Alignment (SA) [7], and Fast
Adaptation [19]. However, as described in the next section, our method is more general and
both SA and GFK can be unified in our framework. Fast Adaptation [19] proposed an adap-
tive version of Linear Discriminant Analysis (LDA) by incorporating both the source and
target covariance structure. Since it is limited to LDA and does not use subspace projection,
it is also a special case of our method.

3 Subspace Distribution Alignment (SDA)
We follow a common strategy of first projecting the source and target data into respective
lower-dimensional subspaces, then finding a mapping between the subspaces [7, 9, 10].

Suppose the source data has points Ds = [xs,1, ...], xs,i ∈ RN , with labels Ls = [y1, ...],
while the target data has examples Dt = [xt,1, ...] without label information. Ss and St are the
d dimensional source and target subspaces respectively, which could be computed by PCA or
another transformation as illustrated in Section 3.2. Our goal is to project the source training
points Ds into target space. Suppose T is a matrix that transforms the source subspace to
target subspace (or vice versa). After this transformation T , ST

t projects the transformed
source data back to the target space. Thus, the resulting mapping is:

Ms = SsT ST
t (1)
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Subspace  Projection

Figure 2: An illustration of why standard feature normalization fails to align distributions in
subspace methods. Even though the original data are normalized to have zero mean and unit
variance (left figure), subspace projection (e.g., PCA) changes the variance of the dimensions
in the new basis (right figure). Thus, the variance along the bases for the source subspace is
likely to be different to those of the target subspace. (Best viewed in color)

After this mapping, the classifier learned on DsMs could be used on the target data directly.
Usually T is learned in such a way that the mapped source subspace is as close to the target
subspace as possible.

The intuition behind our approach is that although the above transformation might align
the subspaces (the bases of the subspaces), it might not fully align the data distributions
in the subspaces. We use the first- and second-order statistics, namely the mean and the
variance, to describe a distribution in this paper. Other statistics (i.e. median) or even certain
probability distributions (i.e. normal distribution, beta distribution, etc.) could be used as
well. For example, suppose the source distribution is normal and the target distribution is
beta, then the distribution alignment would be transforming the source normal distribution
to target beta distribution.

Normalizing the original input data does not necessarily solve this issue. As illustrated in
Figure 2, even if the original data are normalized to have zero mean and unit variance, sub-
space projection (i.e. PCA) changes the variance in the subspace. Thus, the variance along
the bases for the source subspace is likely to be different from that of the target subspace.

Subspace alignment also does not address the problem of distribution alignment. Con-
sider the case in Figure 1, where original source data and target data were projected into
subspaces and we assume the subspace transformation T fully aligned these two subspace
bases. However, the distributions are still different enough to cause reduced performance
of source-trained classifiers since these distribution difference affects the decision boundary.
We want the source distribution and target distribution in the subspaces to be aligned as well.

We propose Subspace Distribution Alignment (SDA), which aligns the source and target
data in the subspaces, namely, it aligns the distributions as well as the subspace bases. SDA
constructs the mapping between source and target points to be

Ms = SsTAST
t (2)

where the difference with the previous approaches is the inclusion of the A matrix. A is
used to align the distributions in the subspaces. As mentioned before, we use mean and
variance to describe a distribution in this paper. Since means are typically zero after data
preprocessing (i.e. normalization) and are not affected by subspace projection, there is no
need to align them. As covariance is the general case of variance in multidimensional space,
A could be simply constructed from the covariance matrices of the source and target data
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in the subspaces. Suppose Ws and Wt are the square roots of the covariance matrices of the
source and target data in the subspaces respectively. These two matrices could be diagonal
if the subspace bases are the principal components, as in Section 3.1, however, they may not
be diagonal, as in Section 3.2. Then A is W−1

s Wt since W−1
s transforms the source data into

zero mean and unit covariance while Wt adds the covariance of target data as illustrated in
Figure 1. Thus, A transforms the statistics of source subspace distribution to the target ones.

Note that W−1
s is widely used in, e.g., [8, 11, 19], to decorrelate or whiten the data.

However, the use of W−1
s in the mainstream approaches is quite different from this paper.

They use it to remove correlation (whitening) of input features, such as HOG. In our paper it
aligns the distributions, as the features in the subspace are usually uncorrelated after subspace
projection (i.e. PCA). As illustrated in Figure 2, A is also quite different from normalization.
Other forms of the A matrix could be used as well based on the chosen distribution statistics.

In the following, we provide two variants of SDA. The first one aligns the source and
target data between two subspaces (source subspace and target subspace) while the second
one aligns them between an infinite number of subspaces (all the subspaces on the geodesic
flow). We show that SA [7] and GFK [9] are special cases of our generalized method.

3.1 Distribution Alignment between Two Subspaces
A common approach is using the source principal components Ps and target principal com-
ponents Pt learned by PCA directly as the source subspace Ss and target subspace St respec-
tively. One way to obtain T is to find a matrix that maps Ss to be as close as possible to St
in the sense of minimizing the Frobenius matrix norm [7], resulting in TT S = ST

s St . Since
TT S aligns the bases of Ss and St , the distribution alignment matrix A should also be applied
between these two subspaces. Suppose Es and Et are the eigenvalues corresponding to Ss and

St . Then we could set Ws = E
1
2

s and Wt = E
1
2

t as Es and Et are the variances of the orthogonal
principal components. This is equivalent to using the square roots of the covariance matrix
as the cross correlations are zero after PCA projection and avoids redundant calculation since

Es and Et are returned by PCA as well. Thus, we assign AT S =W−1
s Wt = E

−1
2

s E
1
2

t . The final
mapping of Subspace Distribution Alignment between Two Subspaces (SDA-TS) is:

Ms = SsTT SAT SST
t = Ss(ST

s St)(E
−1
2

s E
1
2

t )ST
t (3)

Note that, by setting AT S to the identity matrix, we obtain SA as a special case. The pseu-
docode of SDA-TS is illustrated in Algorithm 1.

3.2 Distribution Alignment between Infinite Subspaces
As shown in [9], the kernel trick can be applied to integrate over an infinite number of
subspaces on the geodesic flow path from the source to the target domain. At first glance,
it seems impossible to align distributions between such infinite subspaces. However, in the
following, we will show that the distribution alignment can be done in one “phantom” joint
space computed as part of the geodesic flow kernel.

The geodesic flow Φ(t) is constructed based on source principal components Ps and
target principal components Pt for t ∈ [0,1] where Φ(0) = Ps and Φ(1) = Pt . The variable
t can be thought of as a time step that specifies the amount of flow. Thus, at time t = 0,
the flow is just a projection onto the source subspace, at time t = 1, it is the projection onto
the target subspace, with all intermediate values projecting onto intermediate subspaces that

interpolate between them. In particular, Φ(t) = ΩT
[

Γ(t)
−Σ(t)

]
where ΩT =

[
PsU1 RsU2

]
. Rs
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Algorithm 1 SDA-TS for Domain Adaptation

Input: Source Data Ds Target Data Dt
Source Labels Ls, and Subspace Dimension d
Output: Target Labels Lt
Ss,Es← SV DS(Ds,d) % source principal components and source subspace
St ,Et ← SV DS(Dt ,d) % target principal components and target subspace
TT S = SsSt % basis alignment matrix

Ws = E
1
2

s

Wt = E
1
2

t
AT S =W−1

s Wt % distribution alignment matrix
Ms← SsTT SAT SST

t % final mapping
Lt ←Classi f ier(Ds,Dt ,Ms,Ls)

is the orthogonal complement of Ps and U1,U2 are derived using generalized singular value
decomposition (GSVD) of PT

s Pt and RT
s Pt . Both Γ(t) and Σ(t) are diagonal matrices with

elements equal to the cosine and sine of the pricipal angles θ between Ps and Pt .
We can think of ΩT as a joint space that is constructed from both the source principal

components Ps and target principal components Pt . As shown above, each geodesic flow
projection is created by first performing a fixed projection ΩT to map points to this joint

space, followed by a rotation
[

Γ(t)
−Σ(t)

]
to “hallucinate” the intermediate subspace. The last

step depends only on the angles θ between Ps and Pt . Since ΩT is independent of θ , the

kernel trick is applied to the rotation
[

Γ(t)
−Σ(t)

]
alone. It integrates over an infinite number

of principal angles θ to obtain the final transformation TIS =

[
Λ1 Λ2
Λ2 Λ3

]
. Here, Λ1,2,3 are

diagonal matrices based on θ where the diagonal elements of Λ1,2,3 are λ1i = 1+ sin(2θi)
2θi

,

λ2i =
cos(2θi)−1

2θi
, and λ3i = 1− sin(2θi)

2θi
. Based on this definition of geodesic flow, TIS plays the

role of hallucinating and then integrating over an infinite number of intermediate subspaces.
As ΩT maps points to the same joint space (constructed from both Ps and Pt ), we can

apply the distribution alignment AIS in this space. Let D̂s = DsΩ
T and D̂t = DtΩ

T be the
projected source and target data. Their corresponding covariance matrices are Σs = cov(D̂s)

and Σt = cov(D̂t). Thus, AIS = W−1
s Wt = Σ

−1
2

s Σ
1
2
t . The resulting mapping of Subspace Dis-

tribution Alignment between Infinite Subspaces (SDA-IS) is:

Ms = SsTISAISST
t =

[
PsU1 RsU2

] [
Λ1 Λ2
Λ2 Λ3

]
AIS

[
PsU1 RsU2

]T (4)

By setting AIS to the identity matrix, we obtain GFK as a special case. The pseudocode
of SDA-IS is illustrated in Algorithm 2.

4 Experiments
In this paper, we evaluate our methods in the context of object recognition. We use the
standard datasets and protocols of [7, 9, 10, 16, 17]. We compare our methods to their
special cases as well as a baseline method that does not perform any adaptation.
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Algorithm 2 SDA-IS for Domain Adaptation

Input: Source Data Ds Target Data Dt
Source Labels Ls, and Subspace Dimension d
Output: Target Labels Lt
Ps← SV DS(Ds,d) % source principal components
Pt ← SV DS(Dt ,d) % target principal components
Rs← NULL(PT

s )
U1,U2← GSV D(PT

s Pt ,RT
s Pt)

ΩT ← [PsU1 RsU2] % joint space
TIS← Kernel Trick % hallucinating and integrating over infinite subspaces
D̂s← DsΩ

T

D̂t ← DtΩ
T

Ws←COV (D̂s)
1
2

Wt ←COV (D̂t)
1
2

AIS =W−1
s Wt % distribution alignment matrix

Ms← SsTISAISST
t % final mapping

Lt ←Classi f ier(Ds,Dt ,Ms,Ls)

Amazon Caltech-‐256DSLR Webcam

Figure 3: Sample images from the Office-Caltech10 dataset.

4.1 Datasets

We use the same Office-Caltech10 dataset as GFK [9] and SA [7], to allow direct comparison.
It contains 10 object categories (backpack, bike, calculator, headphones, keyboard, laptop
computer, monitor, mouse, mug, and projector) in four image domains: Webcam, DSLR,
Amazon, and Caltech256. We additionally conduct experiments on the original Office31
dataset [17], which contains 31 object categories (the same 10 categories of Office-Caltech10
plus 21 additional categories) in three domains: Webcam, DSLR, and Amazon. Figure 3
shows example images from the Office-Caltech10 dataset.

We use the standard SURF features released by the dataset authors [9, 17]. In these
features, the images were encoded with 800-bin bag-of-words histograms and normalized to
zero mean and unit standard deviation in each dimension. Since there are four domains for
Office-Caltech10 dataset, there are 12 experiment settings, namely, A-C (train classifier on
(A)mazon, test on (C)altech), A-D (train on (A)mazon, test on (D)SLR), A-W, and so on.
For the Office31 dataset, there are 6 experiment settings as there are only three domains.

4.2 Setup

We compare our methods SDA-TS and SDA-IS to their special cases SA and GFK respec-
tively. Our baseline is NA (no adaptation), where we use the classifier trained on the original
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Figure 4: Mean accuracy across all 12 experiment settings (domain shifts) of the k-NN Clas-
sifier on the Office-Caltech10 dataset. Both our methods SDA-IS and SDA-TS outperform
GFK and SA consistently. The x-axis shows the dimensionality of the subspace. For NA, as
it uses the original feature space without subspace projection, we just average over 20 ran-
domized trials at each subspace dimension. Left: k-NN Classifier with k=1; Right: k-NN
Classifier with k=3. (Best viewed in color)

source domain directly on the target domain. For SA and GFK, we use the source code pro-
vided by the authors. We follow the protocol of [7, 9] and use k-NN (with k = 1) as base
classifier. To assess stability with respect to the k parameter, we also set k to 3.

One key parameter of SA and GFK is the subspace dimension d. As shown in [7, 9]
and our own experiments, the optimal d is always between 10 and 100 for these datasets. d
is usually set by cross-validation [7] or some distance measure [9]. Since we want to show
that our methods outperform their special cases consistently, we run experiments on all the
subspace dimensions from 10 to 100.

For each of the 12 or 6 domain shifts, we conduct experiments using the same setting
as [7, 9]. Briefly, for each subspace dimension per domain shift, we conduct experiments
in 20 randomized trials and get the average accuracy. In each trial, we randomly sample a
certain number (20 for Amazon, Caltech, and Webcam; 8 for DSLR as there are only 8 images
per category in the DSLR domain) of labelled images in the source domain as training set,
and use the unlabelled data in the target domain as the test set. The final mean accuracy is
averaged over the 12 or 6 domain shifts.

For NA, as it uses the original features, we just average over 20 randomized trials without
doing any subspace projection.

4.3 Results

Figure 4 and Figure 5 show the mean accuracy across all the domain shifts of k-NN for
Office-Caltech10 and Office31 respectively. From the results we can see that both our meth-
ods SDA-TS and SDA-IS outperform their special cases SA and GFK consistently on both
datasets. This is true for nearest neighbor parameters k=1 and k=3, with similar overall
trends. All methods outperform the baseline NA by a large margin. The improvement of
SDA-IS over GFK is larger than the improvement of SDA-TS over SA. One possible ex-
planation is that the joint space ΩT of GFK contains more dimensions (same dimension
as the original source and target data) than the source subspace Ss and target subspace St
of SA. Thus, there is more room for improvement. We also note that the performance of
infinite-subspace methods tends to decline faster with larger subspace dimension.
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Figure 5: Mean accuracy across all 6 experiment settings (domain shifts) of the k-NN Clas-
sifier on the Office31 dataset. Both our methods SDA-IS and SDA-TS outperform GFK and
SA consistently. The x-axis shows the dimensionality of the subspace. For NA, as it uses
the original feature space without subspace projection, we just average over 20 randomized
trials at each subspace dimension. Left: k-NN Classifier with k=1; Right: k-NN Classifier
with k=3. (Best viewed in color)

5 Conclusion
In this paper, we proposed a new method for unsupervised domain adaptation. Our approach
incorporates distribution alignment into subspace adaptation. Two recent subspace adapta-
tion methods, Geodesic Flow Kernel [9] and Subspace Alignment [7], can be obtained as
special cases of our approach. By taking into account the difference of the two distributions
in the source and target subspaces, our method further reduces data mismatch, leading to
improved results. Extensive experimental results on standard benchmarks demonstrate the
advantage of our approach over published methods.
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