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Figure 1: Existing approaches for domain adaptation via subspace map-
ping fail to properly align the source and target distributions. Our pro-
posed approach improves domain alignment by taking the difference of
the source and target distributions into account.

Abstract. Traditional machine learning algorithms often fail to generalize
to new input distributions, causing reduced accuracy. Domain adaptation
attempts to compensate for the performance degradation by transferring
and adapting source knowledge to target domain. Existing unsupervised
methods project domains into a lower-dimensional space and attempt to
align the subspace bases, effectively learning a mapping from source to
target points or vice versa. However, they fail to take into account the
difference of the two distributions in the subspaces, resulting in misalign-
ment even after adaptation. We present a unified view of existing sub-
space mapping based methods and develop a generalized approach that
also aligns the distributions as well as the subspace bases.
Background. Domain adaptation, or covariate shift, is a fundamental
problem in machine learning, and has attracted a lot of attention in the
machine learning and computer vision community. Domain adaptation
methods for visual data attempt to learn classifiers on a labeled source
domain and transfer it to a target domain. There are two settings for vi-
sual domain adaptation: (1) unsupervised domain adaptation where there
are no labeled examples available in the target domain; and (2) semi-
supervised domain adaptation where there are a few labeled examples in
the target domain. Most existing algorithms operate in the semi-superised
setting. However, in real world applications, unlabeled target data is of-
ten much more abundant and labeled examples are very limited, so the
question of how to utilize the unlabeled target data is more important for
practical visual domain adaptation. Thus, in this paper, we focus on the
unsupervised scenario.

Most of the existing unsupervised approaches have pursued adap-
tation by separately projecting the source and target data into a lower-
dimensional manifold, and finding a transformation that brings the sub-
spaces closer together. This process is illustrated in Figure 1. Geodesic
methods [2, 3] find a path along the subspace manifold, and either project
source and target onto points along that path [3], or find a closed-form
linear map that projects source points to target [2]. Alternatively, the sub-
spaces can be aligned by computing the linear map that minimizes the
Frobenius norm of the difference between them, a method known as Sub-
space Alignment [1].
Approach. The intuition behind our approach is that although the exist-
ing approaches might align the subspaces (the bases of the subspaces), it
might not fully align the data distributions in the subspaces as illustrated
in Figure 1. We use the first- and second-order statistics, namely the mean
and the variance, to describe a distribution in this paper. Since the mean
after data preprocessing (i.e. normalization) is zero and is not affected
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Figure 2: Mean accuracy across all 12 experiment settings (domain shifts)
of the k-NN Classifier on the Office-Caltech10 dataset. Both our methods
SDA-IS and SDA-TS outperform GFK and SA consistently. Left: k-NN
Classifier with k=1; Right: k-NN Classifier with k=3.
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Figure 3: Mean accuracy across all 6 experiment settings (domain shifts)
of the k-NN Classifier on the Office31 dataset. Both our methods SDA-IS
and SDA-TS outperform GFK and SA consistently. Left: k-NN Classifier
with k=1; Right: k-NN Classifier with k=3.

by subspace projection, there is no need to align it. However, neither
normalization nor subspace basis alignment aligns the covariances.

We propose Subspace Distribution Alignment (SDA), which properly
aligns the source and target data in the subspaces, namely, it aligns the
distributions as well as the subspace bases. SDA constructs the mapping
between source and target points to be

Ms = SsTAST
t (1)

where Ss and St are the d dimensional source and target subspaces respec-
tively, T is the subspace basis alignment matrix, and A is the subspace dis-
tribution alignment matrix. Suppose Ws and Wt are the square roots of the
covariance matrices of the source and target data in the subspaces respec-
tively. Then A could simply be W−1

s Wt since W−1
s transforms the source

data into zero mean and unit covariance while Wt adds the covariance of
target data. Thus, A transforms the source subspace distribution to the
target one. We provide two variants of SDA: SDA-TS aligns the source
and target data between two subspaces (source subspace and target sub-
space); SDA-IS aligns them between an infinite number of subspaces (all
the subspaces on the geodesic flow). We show that Subspace Alignment
(SA) [1] and Geodesic Flow Kernel (GFK) [2] are special cases of our
generalized method.
Experiments. We follow the protocol of [1, 2, 3, 4] and compare our
methods to their special cases as well as the no adaptation baseline (NA).
Extensive experimental results on standard benchmarks (Figure 2 and 3)
demonstrate the advantage of our approach over published methods.
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