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Figure 1: Proposed deep processing pipeline. Given an image repre-
sentation, e.g., the output of the convolutional part of a pre-trained state-
of-art DNN, J fully connected layers, each involving a diagonal matrix
that controls its effective dimensions, are jointly learned with final linear
SVM classifiers.

Our proposed approach is illustrated in Fig. 1. The architecture we
consider consists of a sequence of fully-connected layers, with a diagonal
matrix between them. We present a method that automatically selects the
size of the weight matrices inside fully-connected layers indexed by j =
1, . . . ,J. Our approach relies on a regularization penalty term consisting of
the `1 norm of the diagonal entries of diagonal matrices inserted between
the fully-connected layers. Using such a penalty term forces the diagonal
matrices to be sparse, accordingly selecting the effective number of rows
and columns in the weights matrices of adjacent layers. We present a
simple algorithm to solve the proposed formulation and demonstrate it
experimentally on a standard image classification benchmark.

We can express the architecture in Fig. 1 as a concatenation of units
of the following form:

f j(x) = D j
[
M jx+b j

]
+
, (1)

where [z]+ = [max(0,zi)]i is the commonly used Rectified Linear Unit
(ReLU) non-linearity. Each layer is defined by diagonal matrix D j and
matrix M j. A deep architecture can be derived from (1) using the standard
stacking approach. Letting ◦ denote the composition operator such that
f ◦g(x) = f (g(x)), this can be denoted as

f J ◦ . . .◦ f 1(x), (2)

where, in this case, the vector x denotes the representation of the image
at the input of the architecture. The image representation can consist of
a direct re-ordering of the RGB values in the image [1, 2], or it can be a
feature derived from the image [3], which is the approach we follow in
the present work.

Besides the variables (M j,D j,b j)
J
j=1 in (1), one needs to learn the

vectors {wk}K
k=1 that define the SVM classifiers for the K classes. We will

learn these variables from an annotated training set comprised of N train-
ing images xi, i = 1, . . . ,N, each with K labels yk

i ∈ {−1,1},k = 1, . . . ,K
indicating whether image i belongs to class k or not. Given such a training
set, our approach consist of minimizing the following objective over all
the variables {(M j,b j,D j)}J

j=1 and all the classifiers {wk}K
k=1:
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Figure 2: Effect of the penalty weight δ on (left) the number of zero
diagonal entries of D j, j = 1, . . . ,4, and (right) on the classification per-
formance as measured by mAP. The zero diagonal entries are presented
as stacked plots so that the vertical displacement of any shaded regions
corresponds to the number of zero diagonal entries of D j for the corre-
sponding layer.

In the above expression, we have used (i) l(x) to denote the hinge loss,
given by max(0,1− x); (ii) ‖D‖∗ to denote the trace norm, given by
∑i |Dii| for the case of diagonal D; and (iii) ‖M‖2

F to denote the squared
Frobenius norm ∑i j M2

i j.
To illustrate the motivation behind this learning objective, we note

first that the terms inside the summation over k in (3) are recognizable as
an SVM objective for class k, where the scalar C is the SVM regulariza-
tion parameter. The feature vectors used within this SVM objective are
given by fJ ◦ . . . ◦ f1(xi), which depends on {(M j,b j,D j)}J

j=1. Hence
we are learning the classifiers jointly with the feature extractor used to
represent the input images.

The two regularization terms comprised of summations over j in (3)
have two important purpose. First is to keep the SVM terms from decreas-
ing indefinitely. A second important purpose is to automatically select the
shapes of the weights matrices M j and b j and `1 norms applied to diago-
nal matrices such as D j are sparsity inducing norms.

In order to minimize (3), we will employ a block-coordinate SGD
approach. We evaluate our method on Pascal VOC 2007 dataset and com-
pare it against various state-of-the-art algorithms. Our learning algorithm
is governed by three important terms: the penalty weights µ and δ and
and the number of training epochs T . The number of training epochs is
determined using the validation set. Further, we evaluate the performance
of our method as a function of the number of layers J in the architecture.

In Fig. 2, we plot both the sparsity for all layers and the correspond-
ing test and validation mAPs when varying the penalty weight δ . Note
that increasing δ drastically increases the number of zero diagonal entries
in the architecture while only slightly affecting the classification perfor-
mance.

[1] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. Return of the Devil in the Details: Delving Deep into Con-
volutional Nets. In British Machine Vision Conference, 2014. URL
http://arxiv.org/abs/1405.3531.

[2] Alex Krizhevsky, I. Sutskever, and Geoffrey Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Neural In-
formation Processing Systems, pages 1–9, 2012.

[3] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transfer-
ring Mid-Level Image Representations using Convolutional Neural
Networks. Computer Vision and Pattern Recognition, 2014.


