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The objective of global motion compensation (GMC) is to remove in-
tentional (due to camera pan/tilt/zoom) and unwanted (e.g., due to hand
shaking) camera motion. GMC is utilized in applications such as video
stitching, or as pre-processing for motion-based video analysis. Normally,
GMC estimates the homography transformation between two consecutive
frames by matching keypoints on the frames, and mapping the frames to
a global coordinate. To remedy outliers in keypoint matches, robust tech-
niques are proposed for homography estimation, e.g., RANSAC [1], by
assuming the number of outliers to the correct homography is much less
than inliers. However, in the presence of predominant foreground, i.e.,
moving objects and people, a larger proportion of the putative matches are
mismatches. Predominant foreground may result from a higher percent-
age of coverage by foreground pixels, or occlusion, textureless and non-
informative background, blurred background, or a combination of these
reasons. In presence of predominant foreground, the common variations
of RANSAC have little chance of selecting a minimal set of background
keypoints by random sub-sampling in a limited number of iterations.

In this paper, we propose a robust GMC (RGMC) method for sup-
pressing foreground keypoint matches and mismatches, enabling a reli-
able homography estimation in presence of predominant foreground and
textureless background (Fig. 1). We perform foreground suppression by
clustering motion vectors computed from keypoint matches and identi-
fying potential clusters corresponding to the background. We use SURF
algorithm for keypoint detection and description and to detect sufficient
background keypoints even for textureless backgrounds, the Fast-Hessian
keypoint detection threshold is decreased drastically. Since motion vec-
tors on the background result from camera motion and are more consistent
than foreground motion vectors, clustering will likely lead to some candi-
date regions from the background (see Fig. 1 (a)). Each cluster is analyzed
separately by random subsampling of matches in that cluster and evalu-
ating the resultant homography against the cost function, discussed later.
However, background motion vectors may be assigned to multiple clus-
ters. To merge background clusters, based on the estimated homography
and cost function value (CFV) of each cluster, a subset of the best clusters
are selected to be merged in a greedy algorithm (Fig. 1(b)).

To evaluate the estimated homography from a quadruplet of keypoints
matches, we derive a cost function that unifies the keypoint matching
score, edge matching score, and the information from compensating pre-
vious frames. Denote the matching frames as It−1 and It , their candidate
homography as θt , and the set of keypoint matches under study as D. In
Bayesian framework, θt can be estimated by maximizing

p(θt |D,It ,It−1,θt−1) =
p(D,It ,It−1|θt ,θt−1)p(θt |θt−1)

p(D,It ,It−1|θt−1)
, (1)

where θt−1 is the obtained prior homography of frames It−1 and It−2. The
p(θt |θt−1) is the conditional probability of θt given the prior homography
θt−1. The denominator of Eqn. 1 is constant w.r.t. θt . By expanding the
likelihood term, the homography can be verified using

p(θt |D,It ,It−1,θt−1)∝ p(D|It ,It−1,θt ,θt−1)p(It ,It−1|θt ,θt−1)p(θt |θt−1).
(2)

The term p(D|It ,It−1,θt ,θt−1)= p(D|It ,It−1,θt) and represents how well
the keypoint matches D extracted from It and It−1 are matched by θt .
Knowing It is independent from θt−1, p(It ,It−1|θt ,θt−1) = p(It ,It−1|θt),
reflects how well the frame It transformed under θt matches It−1. Thus,
the homography is estimated by minimizing,

f (θt) =−ln(p(D|It ,It−1,θt))− ln(p(It ,It−1|θt))− ln(p(θt |θt−1)). (3)

We use the keypoint matching error formulation of Yan et al. [2] for
p(D|It ,It−1,θt). For appearance consistency under θt transformation,
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Figure 1: RGMC algorithm flowchart: (a) color indicates various motion vector
clusters, (b) the merged cluster of background, (c) the motion history, and (d) the
motion compensated video.

p(It ,It−1|θt), we propose edge-based matching for its superior accuracy
and efficiency.

To insure that the edge matching score reflects how well the back-
ground, not foreground, of the two frames match, we iteratively update a
motion history Mt . We define the edge matching score (EMS) as

E(I1,I2,R) =
2‖Φ(I1)

⊙
Φ(I2)

⊙
R‖1

‖Φ(I1)
⊙

R‖1 +‖Φ(I2)
⊙

R‖1 + c
, (4)

where Φ is edge detection operator,
⊙

is element-wise multiplication, R
denotes the mask specifying the region of interest for EMS calculation,
‖ ·‖1 computes the L1 matrix norm, and c(= 0.001) is a constant to avoid
division by zero. We use thresholded motion history M as region of inter-
est in our homography verification model.

To utilize the prior information for a stable homography estimation,
we decompose the homography model into translation, scale, and rotation
models and model the difference between these values over consecutive
frames.

We empirically learn the various probability models used in our for-
mulations. For this learning, we manually stitch 250 pairs of consecutive
frames to find the best homography estimate. By plugging the probability
models to Eqn. 3 and ignoring the constants, the final cost function is,
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∑
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(5)

where Nin and Nout represent number of inliers and outliers, respectively,
and bxcT = min(x,T ) restricts the impact of prior information. The ho-
mography θt is estimated by

θ
∗
t = argmin( f (θt)). (6)

Extensive experiments and comparison with manually matched ground
truth and baseline methods demonstrate the superiority of RGMC.
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