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Geometric multi-model fitting aims at extracting parametric models from
unstructured data in order to organize and aggregate visual content in
suitable higher-level geometric structures. This ubiquitous task can be
encountered in many Computer Vision applications, for example in 3D
reconstruction, in the processing of 3D point clouds, in face clustering, in
body-pose estimation or video motion segmentation, just to name a few.

In practice, it is necessary to overcome the “chicken-&-egg dilemma”
inherent to this problem: in order to estimate models one needs to first
segment the data, but in order to segment the data it is necessary to know
the models associated with each data point. The presence of multiple
structures hinders robust estimation, which has to cope with both gross
outliers and pseudo-outliers. Two somehow orthogonal strategies have
been proposed in the literature in order to adress this challenging prob-
lem: consensus analysis and preference analysis. Consensus based meth-
ods, building on the RANSAC paradigm, instantiate a pool of tentative
models and extract the strucutures that have maximal consensus. Pref-
erence oriented algorithms [2, 3] instead tackle this problem by the data
point of view. Residuals between point and putative models are used in
order to build a conceptual space in which points are portrayed by their
preferences with respect to the instantiated strucures, The multi model fit-
ting problem is then solved by clustering points in this preference space.

The method we present reduces the multi-model fitting task to many
easier single robust model estimation problems, by combining preference
analysis and robust low rank approximation. Three main step can be sin-
gle out in our appraoch. At first data points are shifted in a conceptual
space, where they are framed as a preference matrix Φ as shown in Fig. 1.
Our conceptual representation makes use of an M-estimator in order to
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Figure 1: Preference representation

model points preferences, in this way a first protection against outlier is
achieved. The preference space is then equipped with a kernel, based on
the Tanimoto distance, in this way an affinity matrix K, which measures
the agreement between the preferences of points, is derived.

The second step is devoted to robustly segment points explointing
the information encapsulated in K. This stage can be thought as a sort
of “robust spectral clustering”. It is well known that spectral clustering
produces accurate segmentations in two steps: at first data are projected
on the space of the first eigenvectors of the Laplacian matrix and then
k-means is applied. The shortcoming of spectral clustering however is
that it is not robust to outliers. We propose to follow the same scheme
enforcing robustness exploiting the low rank nature of the problem. As
pictorially illustrated in Fig. 2, we decompose the affinity matrix as

K =UU>+S. (1)

The matrix S models the sparse preferences expressed by outliers, and is
obtained by appling Robust PCA, which replaces the eigen-decomposition
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Figure 2: Robust low rank analysis

step of spectral clustering. The low rank part of K, representing symilarity
between inliers, is hence decomposed as UU> taking advantage of Sym-
metric NMF [1], which plays the role of k-means. The obtained matrix
U represents a soft segmentation of the data in which outliers are under-
weighted.

Finally, models are extracted inspecting the product of the preference
matrix with a thresholded U , mimicking the MSAC strategy. The use of
robust statistics for adaptatively estimate the inlier threshold constituites
a third guard against the presence of outliers.
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Figure 3: Models and segments extraction

We deal with two applications of geometric multi model fitting on real
data: motion segmentation and plane segmentation. In the motion seg-
mentation experiments, given two images of the same scene composed by
several objects moving independently, the aim is to fit fundamental matri-
ces to subsets of point matches. In plane segmentation scenario, given two
uncalibrated views of a scene, the aim is to recover the multi-planar struc-
tures by fitting homographies to point correspondences. The experiments
are carried on the AdelaideRMF [4] dataset, composed of 38 image pairs
(19 for motion segmentation and 19 for plane segmentation) with match-
ing points corrupted by gross outliers and have provided evidence that our
method compares favourably with state of the art competing algorithms.
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