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Figure 1: MG2F Framework: A noisy image slice from the 3D reconstructed
tomogram is fed to the algorithm, where the graph is built on a selected scale space
image (i.e. coarse grid) acting as a guidance for the regularized graph spectral filter.

1 Introduction

Cryo-electron tomography (CET) is a powerful imaging technique in bi-
ological sciences which bridges the gap between the molecular and the
cellular structural biology [5], giving a better understanding of protein in-
teractions and thus better drug delivery strategies. In principle, similar
to Computed Tomography (CT) in Medical Imaging, the acquired pro-
jections at limited angles are reconstructed back to create the 3D object,
however, these projections are extremely noisy and have a low contrast.
Therefore, many conventional filters failed in smoothing the background
while preserving edges and interesting objects, which makes developing
a denoising algorithm is very desirable for better interpretation.

We show in this paper how our methodology meets the hypothesis: a)
By using a multi-scale pyramid for guidance we are able to detect mean-
ingful scales and use them for guidance without oversmoothing fine scale
structures. b) Using a patch-based approach, we can take advantage of
redundant structures in the whole image rather than using a pre-defined
spatial window for averaging similar pixels or patches. This way, we can
preserve the local and global consistencies. c) By deriving explicit solu-
tion formulas for computing the intermediate filtering results we obtain
an efficient algorithm.

2 Methodology

Given a noisy image Iη , we collect N overlapping patches, which can
be seen as data points ν = {ν1,ν2, ...,νN} ∈ Rn×N lying on a manifold
M embedded in Rn space such that ν = EIη , where E is an operator
collecting patches and vectorize it, cf. Figure1. The relation between
the data points can be represented by a k-NN connected, undirected, and
weighted graph G = {ν ,ε,ω}, where ε is the set of edges, and ω is the
set of edge weights.

These weights are assigned using a heat kernel, however, the distance
between these patches is computed on a certain structure scale σs where
the noise manifest itself and can be used as a guidance for the graph spec-
tral filter h(λi), which is computed based on the eigenvalue decomposi-
tion of the normalized Laplacian matrix ˜Lσs :=UΛUT . This way, we can
formulate the denoising problem as follows:

Î f = arg min
I f

{
1
2
‖I f − Iη‖2

2 +αSσs(I f )

}
, (1)

where α > 0 is the regularization parameter and Sσs(I f ) =
1
2 Tr

(
νLσs ν

T )
is the graph guidance regularization term.
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Algorithm PSNR
Parameters (dB)

Bilateral (BF) [7]
(σi=0.5, σr=1.5, W=10)

17.49

Beltrami (BTR) [2]
(δ=0.1, iter=10)

17.37

EED [6]
(ρ=4, iter=30)

11.27

NAD [4]
(iter=10, κ=0.3)

16.50

NLM [1]
(P=7, W=21, σs=4σn)

12.11

RGF [3]
(σi=0.5, σr=1.5, iter=10)

17.49

MG2F
(α=0.8, iter=4, σh=0.1)

17.78

Figure 2: Photographic Image: Results of different algorithms on Lena
image(128X128, SNR=7) along with a tabulated comparison to the proposed
MG2F filter.

The closed form solution can be written as

Î f = ET

(
N

∑
i=1

1
(1+αλi)

uiν̂i

)
= ET

(
1

I +αL̃σs

)
EIη , (2)

where ET denotes the reshaping process of the previously vectorised patches,
and the spectral response of the filter h(λi) = 1/(1+αλi) controls the fre-
quency decay and thus the degree of smoothness. A connection to classi-
cal filters and the sensitivity analysis are discussed in details.

3 Results

To give a good illustrative example, we run the algorithm on Lena image,
which corrupted by an (i.i.d) Gaussian noise resulting in SNR of 7. Dif-
ferent algorithms are applied on this image, results are shown in Figure 2
for the cropped images. It is clear that our method gives an outperforming
PSNR indicating for better contrast. A simulated and real CET data exper-
iments in 2D and 3D are presented in the paper. Using the gold-standard
metrics, we show that our denoising algorithm significantly outperforms
the state-of-the-art methods such as NAD, NLM and RGF in terms of
noise removal and structure preservation.
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