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Abstract

We present a very simple computational model for planar shape decomposition that
naturally captures most of the rules and salience measures suggested by psychophysical
studies, including the minima and short-cut rules, convexity, and symmetry. It is based on
a medial axis representation in ways that have not been explored before and sheds more
light into the connection between existing rules like minima and convexity. In particular,
vertices of the exterior medial axis directly provide the position and extent of negative
minima of curvature, while a traversal of the interior medial axis directly provides a small
set of candidate endpoints for part-cuts. The final selection follows a simple local con-
vexity rule that can incorporate arbitrary salience measures. Neither global optimization
nor differentiation is involved. We provide qualitative and quantitative evaluation and
comparisons on ground-truth data from psychophysical experiments.

1 Introduction

THE psychophysical, ecological, and computational aspects of planar shape decomposi-
tion into parts have been studied for more than five decades [25]. Although a complete

theory of object recognition remains an impossibility, it is believed that our ability to recog-
nize objects by their silhouette alone is related to simple rules by which the visual system
decomposes shapes into parts [8]. In computer vision, object detection and recognition has
deviated from such studies, but understanding visual perception towards learning better rep-
resentations is always relevant [29].

Recent work on the subject has introduced ever more complex computational models
relying on combinatorial optimization [16, 18, 23]. The main focus of such models is con-
vexity, although the support from psychophysical studies is limited or absent [11, 24]. The
most recognized rules underpinning shape decomposition are the minima rule [8] and the
short-cut rule [27], along with the definition of part-cuts [26]. However, attempts to reflect
these rules into simple computational models still resort to optimization and new ad-hoc
rules [17]. Although the medial axis has been one of the first representations used even be-
fore the formulation of these rules [1, 3], it is not frequently used today. On the other hand,
quantitative evaluation has been practically impossible until recently [5, 12].
Contribution. In this work, we revisit the problem assuming the medial axis representation
and introduce a new computational model referred to as medial axis decomposition (MAD).
Contrary to common belief [17], we argue that this representation is both efficient and robust,
at least as far as decomposition is concerned, and as long as a part hierarchy [25] is not
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(a) exterior (b) interior (c) cuts

Figure 1: Main elements of our method. (a) Exterior medial axis and concave corners (in
green) as boundary arcs that are each the projection of one medial axis end vertex (minima
rule). (b) Interior medial axis and candidate cuts (in red) whose endpoints are contained in
corners and are projection points of the same medial axis point; only one such cut is selected
per corner and medial axis branch. (c) Final cuts according to short-cut and convexity rules:
the shortest cuts are selected for each corner such that each shape part is locally convex at
the corner, roughly forming an interior angle less than π (up to tolerance).

sought. We show that it is possible to incorporate all rules suggested by psychophysical
studies into a computational model that is so simple that one nearly “reads off” part-cuts
from the medial axis. In doing so, we suggest a stronger definition of part-cuts concerning
local symmetry such that the list of candidate cuts is linear in the number of minima. We
also shed more light into the relation of minima to convexity by relaxing the latter to local
convexity. Contrary to global optimization models, this guarantees robustness [25].

The main ideas of our work are illustrated in Fig. 1. As in most related work, a shape is
decomposed into parts by defining a number of part-cuts which are line segments contained
in the shape. According to the minima rule [8], the part-cut endpoints are points of negative
minima of curvature of the shape boundary curve. But it is known [4] that such points
are exactly projection points (boundary points of minimal distance) of end vertices of the
exterior medial axis (the medial axis of the complement of the shape). Moreover, as shown
in Fig. 1a, one may get from a medial axis vertex not just one boundary point but an entire
arc. We call this arc a concave corner or simply corner. It is readily available and involves
no differentiation, contrary to all previous work. We show there are advantages over the
common single-point approach.

There is no constraint as to which pairs of minima (corner points) are candidate as part-
cut endpoints, hence all prior work examines all possible pairs. On the contrary, as shown in
Fig. 1b, we only consider pairs of points that are projection points of the same point of the
interior medial axis (of the shape itself). Similarly to semi-ligatures [1] and single-minimum
cuts [17], a cut may also have only one corner point as endpoint [27]. In either case, end-
point pairs are readily available by a single traversal of the medial axis. Comparing to the
conventional definition, which requires part-cuts to cross an axis of local symmetry [26], this
is a stronger definition in agreement with the definition of necks [25]. Contrary to common
belief, we show that it can actually be in accordance to psychophysical evidence [5]. For
each corner, we only select one cut per medial axis branch; this is a simple and intuitive rule
that has not been observed before.

Now, given a candidate list of cuts, the short-cut rule [27] suggests that priority be given
to the shortest over all cuts incident to each corner point; but it does not specify how many
should be kept. On the other hand, convexity-based approaches attempt to find a minimal
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number of cuts such that each shape part is convex [23]. Clearly, a concave smooth boundary
curve segment would require an infinite partition, so convexity is only sought approximately.
But negative minima of curvature are points where the shape is locally maximally concave.
They are therefore the first points where one should establish convexity by cutting. Hence
we introduce a local convexity rule whereby the minimal number of cuts is selected such that
the interior angle of each part is less than π (up to tolerance) at each corner. Selection is
linear in the number of candidate cuts and again, all information is merely read-off from the
(exterior) medial axis. The final cuts are shown in Fig. 1c.
Structure. The remaining text is organized as follows. Our shape representation is given in
section 2, followed by a more detailed account of our decomposition method in section 3.
Experimental findings are presented in section 4 and conclusions are drawn in section 5.

2 Shape representation
A planar shape is a set X ⊂ R2 whose boundary ∂X is a finite union of mutually disjoint
simple closed curves, such that for each curve there is a parametrization α : [0, 1]→ ∂X by
arc length that is piecewise real analytic. The (Euclidean) distance map D(X) : X → R is
a function mapping each point y ∈ X to

D(X)(y) = inf
x∈∂X

‖y − x‖, (1)

where ‖ · ‖ denotes the `2 norm. For y ∈ R2, let

π(y) = {x ∈ ∂X : ‖y − x‖ = D(X)(x)} (2)

be the set of points on the boundary at minimal distance to y. This set is non-empty because
∂X is closed in R2 hence compact. It is called the projection [1] or contact set [4] of y on
the boundary; each x ∈ π(y) is called a projection or contact point of y.

The (interior) medial axis

M(X) = {x ∈ R2 : |π(x)| > 1} (3)

is the set of points with more than one projection points. This set is a finite linear graph
embedded in R2 [4]. Each edge ofM(X) is homeomorphic to the unit closed interval, and
each point x in an edge has exactly two projection points; a vertex is called an end vertex
(junction) if it has degree 1 (3 or higher). Assuming X is bounded, an end vertex is either
a convex vertex of X (point of discontinuity of α′ on ∂X with interior angle less than π) or
the center of an osculating circle inscribed in X with a connected projection that is either
one point or a circular arc; hence the curvature of α is positive and locally maximum at the
projection [4]. In this work, we also use the exterior medial axis of X , which is the medial
axis of its complement R2 \ X . In this case an end vertex is either a concave vertex of X
(point of discontinuity of α′ on ∂X with interior angle greater than π) or the curvature is
negative and locally minimum at the projection.

In practice, we compute the distance map with any algorithm that provides at least one
representative of the projection π(y) of each point [7], and then compute the medial axis
using the chord residue [2, 20]. Given two points x, y ∈ ∂X , the arc length `(x, y) is the
length of the minimal arc of ∂X having x, y as endpoints or∞ if no such arc exists. Now,
given a point z, its chord residue r(z) = supx,y∈π(z) `(x, y) − ‖x − y‖ is the maximal
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(a) medial axis (b) concave corners

Figure 2: (a) Exterior and interior medial axes of shape #186 from S&V dataset [5].
Branches of the latter shown in random color. (b) Minima: exterior medial and concave
corners (in green, along with lines connecting vertices to their projection points).

difference between arc length and chord length over all pairs of points in its projection. The
residue is non-negative, attains a maximum at a single center point of each path component
ofM(X), and is a non-increasing function of distance to the center point onM(X).

Construction of the medial axis begins at local maxima of the distance map and prop-
agates as long as the residue, measured between single-point projections of neighboring
points, is higher than a given threshold σ > 0. Contrary to common misinterpretation [22],
this method is not constrained to polygons. It is very efficient, does not involve differentia-
tion e.g. of the distance map, preserves shape topology under mild assumptions (in particu-
lar, yields one connected component of the medial axis for each component of X), and can
simplify (in a sense, prune) the medial axis by merely adjusting σ, without simplifying the
curve ∂X in any way. Typically, σ is only 1-2 pixels just to remove discretization noise.
Unfortunately, it is constrained to two dimensions.

In the following, we assume that both the interior and exterior medial axes are available—
in fact, both are computed on a single traversal over a discrete representation of the input
shape X on a regular grid. For simplicity, we assume that for each point x of the medial
axis, the projection π(x) contains exactly two points. In practice, only one projection point is
stored for each x; the second one is obtained from x’s neighbors. The arc length is computed
in constant time [20]. For the interior medial axis, we also parse its graph structure by a single
traversal; we refer to the edges of the graph as medial axis branches. Fig. 2a illustrates the
two medial axes and the branches found on the interior one for a sample shape that will also
serve as a running example in section 3 below.

3 Shape decomposition

A shapeX is decomposed into parts by defining a set of part-cuts or simply cuts, as common
part boundaries. The cut endpoints, in turn, serve as boundaries between parts of ∂X . In
some cases, cuts have been defined as curves, e.g. cubic splines, providing for continuation
of boundary tangents at end points [25]; but in most relevant work, as well as in the current
work, cuts are just line segments for simplicity [9, 26]. In either case, the cut endpoints
always lie on the boundary ∂X and the cuts lie entirely on the closure of X [26]. Additional
conditions apply as discussed below.

In this work, a large number of raw cuts is initially extracted by traversing the interior
medial axis; a short list of candidate cuts is selected by means of an equivalence relation,
and a final cut selection follows by seeking local convexity at each endpoint along with a
few simple salience measures. The entire decomposition process is detailed below.
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From Fragments to Objects: Segmentation and Grouping in Vision24

however, that if the part boundaries are sharp, they force the part cuts to pass through them,

even if this means making slightly longer cuts, or making two cuts instead of one (see Figure 27b).

Another interaction between boundary strength and the short-cut rule can be seen in

Figure 28a. This shape has a narrow region in the middle defined by concave arcs of circles. Each

of these arcs is a region of negative minima of curvature so the minima rule by itself does not

specify any unique boundary point on them. Furthermore, these concave arcs have low

curvature, and hence low boundary strength. At the endpoints of these arcs are negative minima

of curvature with high boundary strength. The cuts joining these sharp negative minima are

slightly longer than the neck  cut in the middle; but these cuts are nevertheless preferred by

                                                                                                                     
8 We will discuss precise geometric factors that determine the strength of part boundaries in the section on
“Part Salience.”

(a) (b)

Figure 27. (a) When negative minima are weak, other factors such as cut length can sometimes
pull part cuts away from negative minima. (Adapted from Siddiqi & Kimia, 1995). (b) However,
when negative minima are sharp, they force the cuts to pass through them even if this means
making two cuts instead of one.

(a) (b)

Figure 28. Demonstrating the interaction between cut length and the strength of part boundaries.
In (a), the cuts at the sharp negative minima are preferred to the shorter cut at the low-curvature
arcs of circles. (Adapted from Braunstein et al., 1989.) In (b), the cut at the arcs of circles is
preferred because it is both shorter and involves boundaries with higher salience.
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(a) full ligature (b) semi-ligature (c) sharp (d) weak

Figure 3: (a) Full ligature on x. (b) Semi-ligature on x, y (in white) [1]. (c) Two nearby
sharp concavities result in two different cuts [26]. (d) Two nearby weak concavities should
ideally result in one cut; this is possible if their locale [9] is known (in green).

Minima. According to the minima rule [8], the shape X should be cut at points of negative
minima of curvature of its boundary parametrization α. In the theory of limbs and necks [25],
this rule is taken to mean that both cut endpoints are such minima points. However, the rule
has been subsequently relaxed by requiring that at least one of each cut endpoints have neg-
ative curvature [27]. This condition is contained in the standard definition of part-cuts [26].
This is in agreement with the earlier theory of ligatures [1] and more recent studies [17]. In
particular, given a set of minima points C, a full(semi)-ligature [1] on two points x, y ∈ C
(resp. one point x ∈ C) is the set of points z whose projection π(z) contains x, y (resp. x but
no other point of C). Commonly referred to as ligatures, these sets are subsets of the medial
axis and disconnect it such that subsequent shape reconstruction produces a rough decom-
position into parts. They are illustrated in Fig. 3a,b. Accordingly, double(single)-minima
cuts [17] are defined as having both endpoints (resp. exactly one endpoint) in the minima set
C. We follow the same idea.

But how is the minima set C exactly determined? All relevant studies assume a discrete
parametrization of shape boundary ∂X and compute negative minima of a discrete approxi-
mation of curvature. Apart from numerical sensitivity and the further assumption of a scale
parameter in every discrete derivative approximation, the limitation is that detected minima
are isolated points that provide no information on the spatial extent of concavities—referred
to as locale [9]—as illustrated in Fig. 3c,d. The background of section 2 specifies that end-
vertex projections of the exterior medial axis are either single points tangent to osculating
circles, or circular arcs. In practice, the two projection points determine a boundary arc that
always approximates a circular arc. We call this arc a concave corner or simply corner.
The radius of the circle is the inverse of the absolute curvature. The three points involved—
the end vertex and its two projection points—directly determine the position, spatial extent,
orientation and strength of the concavity, including both curvature and turning angle. All
information comes for free from the medial axis. Fig. 2b illustrates this idea.

Symmetry. Now potential cuts are determined by all pairs of points in two different corners.
Most relevant work actually examines all pairs [17, 25]. This is not only inefficient, but may
involve all sorts of new ad-hoc rules to resolve conflicts (e.g. that cuts do not intersect) as well
as solving an optimization problem. But the standard definition of part-cuts [26] includes the
additional condition that they cross an axis of local symmetry. We modify the condition such
that the cut endpoints are projection points of the same point of the interior medial axis (recall
that a cut lies in the shape). In most cases this is a stronger condition, but we observe that it
most often agrees with ground truth data from psychophysical experiments [5], as shown in
Fig. 4a-c. Combined with the minima rule, it implies that endpoints are exactly projection
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From Fragments to Objects: Segmentation and Grouping in Vision22

approaches 1). Hence, the probability assigned to the shorter cuts should increase as the ratio of

their radii gets more extreme.

Now, given a silhouette produced by a 3D shape of unknown geometry, the principle of

genericity (e.g., Freeman, 1994) assigns high probability to those 3D interpretations in which the

shape is about as deep as it is wide in the image. Therefore, as in the case of the cylinders above,

the concave creases will encircle the thinner shape, and hence project onto the shorter cuts. Thus

the silhouette is naturally parsed using these shorter cuts.

In a series of experiments using crosses and elbows Singh, Seyranian & Hoffman (1999)

studied subjects’ preferences for making part cuts, as a function of relative cut lengths and relative

part sizes induced by the cuts. They found that subjects strongly and consistently prefered to

parse shapes using shorter cuts, rather than longer ones. However, subjects did not show a

consistent preference for either smaller or larger parts. In addition, their results demonstrated that

the short-cut rule can create part boundaries that are not negative minima of curvature (see, for

example, the two elbows in Figure 23, and the shape in Figure 21).

Siddiqi & Kimia (1995; Siddiqi et al. 1996) proposed a method for parsing shapes, called

necks.  A neck is a part cut which is also a local minimum of the diameter of an inscribed circle

(p. 243). Although this method prefers locally shorter cuts, it measures distances only along

diameters of circles that can be inscribed within the shape. This requirement turns out to be too

restrictive. Figure 25, for example, shows a shape with a natural cut that should be made; but this

cut is not captured by the definition of a neck. The problem is that the circle whose diameter is

the cut cannot be inscribed in the shape. The short-cut rule, on the other hand, considers

distances between all pairs of points on the silhouette outline, as long as these are separated by

an axis of local symmetry (recall the three conditions that part cuts must satisfy). For example, in

Figure 25. Siddiqi & Kimia s definition of neck  fails to capture cases in which a circle of
locally minimal diameter cannot be inscribed within the shape.

θ1

θ2
v

p1

p2

c

(a) local symmetry (b) all subjects (c) majority (d) local convexity

Figure 4: (a) Example from Singh and Hoffman [26] illustrating that a cut across a local
symmetry axis fails to be captured by the medial axis or equivalently by the definition of
neck [25] because a circle cannot be inscribed. (b) A counter-example from ground-truth
data of DeWinter and Wagemans [5] where most subjects do not cut in a similar case (cuts of
all subjects overlaid in blue, 85% transparent). (c) Majority cuts of (b) (in blue) according to
clustering-based ensemble [12]; see section 4 for more details. (d) Measurement of interior
angles at a corner. Exterior medial vertex v and its projection points p1, p2 are known, hence
also the inward/outward orientations of the boundary—the lines joining v and p1, p2 are
normal to the boundary. By translating the two boundary segments starting at p1, p2 and the
cut starting at c to the same origin (vertex v here), we measure the interior angles θ1, θ2 of
the two shape parts at this corner after cutting. Both are less than π, while θ1 + θ2 is not.
Local convexity is achieved and there is no need for more cuts at this corner.

points of the same point of a ligature. So what we do in practice is, traverse the interior
medial axis once, and collect all pairs of projection points such that at least one lies in a
corner. Depending on the number of corners, we call the cuts double or single. The cuts
obtained this way are called raw cuts and illustrated in Fig. 5a. It is easily shown that they
do not intersect by construction.

Equivalence. Observing Fig. 5a, raw cuts are clearly too many, but they tend to appear in
groups. As shown Fig. 5b, we select a small number of candidate cuts before applying other
rules by defining two equivalence relations on cuts and selecting one representative from
each equivalence class. According to the first relation, corner equivalence, two (double) cuts
are equivalent if their endpoints lie on the same pair of corners. In this case, the representative
is chosen that maximizes the protrusion strength measure discussed below. The second,
branch equivalence, specifies that two cuts (double or single) are equivalent if they are on
the same branch and their endpoints share at least one corner; we say a cut is on a branch if
the medial axis point whose projection points are the cut endpoints lies on this branch.

This rule is intuitive and always maintains all correct cuts in our experiments. Observe
in Fig. 5b that whenever two groups of cuts are on the same corner but on two different
branches, there is also a junction and a third branch in the outward direction from the corner,
such that the shape is expanding between the two groups. Hence there should be a repre-
sentative from both cut groups. If there are both double-cuts and single-cuts in the same
equivalence class, the representative is always a double-cut. In either case, the representative
cut is chosen such that its endpoints are closest to the midpoint of the corner arc(s). This
rule is almost always superior to the short-cut rule. For instance, observe the cuts at the tail
in Fig. 5a,b and compare to Fig. 7b of De Winter and Wagemans [5].

Local convexity. Although the psychophysical evidence concerning convexity as a rule
for shape decomposition is limited, most recent studies are based on optimization targeting
approximate convexity. We rather avoid global optimization, not only for its complexity
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(a) raw cuts (b) candidate cuts (c) selected cuts

Figure 5: (a) Symmetry: all cuts (in red, 95% transparent) for the shape of Fig. 2, whose end-
points are projection points of the same interior medial axis point, with at least one endpoint
on a concave corner. (b) Equivalence: candidate cuts selected such that for each corner, there
is a single cut per medial axis branch (each shown in random color); priority is given to cuts
with both endpoints on corners, while representatives are selected such that endpoints are as
close as possible to the midpoint of the associated corner arc. (c) Cuts selected independently
at each corner by descending priority until local convexity is achieved; priority specified by
short-cut rule and other salience measures.

but also because according to robustness requirement [25], decomposition at a point should
only be affected by its local neighborhood, such that partial occlusion and part movement
do not affect the remaining parts. We observe that the minima rule is inherently related to
convexity, since boundary points of negative minima of curvature are in fact points where
the shape is locally maximally concave. We therefore select cuts independently at each
corner in order to achieve local convexity at the corner. In particular, for every corner, we
prioritize all cuts incident to the corner according to criteria discussed below, and we select
cuts by descending priority until the interior angle of all parts after cutting is less than π+ θ,
where θ is a tolerance. Measurement of interior angles is illustrated in Fig. 4d; once more,
all information is readily available from the medial axis. Selected cuts according to local
convexity and short-cut rule (see below) are illustrated in Fig. 5c.

Salience measures. Our local convexity rule selects the appropriate number of part-cuts
independently per corner but is otherwise completely agnostic to their prioritization. This
enables the use of arbitrary salience measures for cuts. Although there is no complete theory,
several such measures have been suggested as plausible, going back to at least Gestalt psy-
chologists [9, 26]. These refer to boundary strength at cut endpoints [9], including turning
angle for cusps and normalized curvature for smooth boundary, continuation of boundary
at endpoints [26], as well as of salience of cuts or parts themselves, including relative area,
protrusion [9], and cut length [27]. Studying their role is beyond the scope of this work. We
rather focus on a general framework that can easily incorporate any of these measures; all
are readily available in our representation with the exception of relative area. In practice,
we follow a minimal approach by only using cut length (shorter cuts are preferred) after first
discarding cuts with protrusion less than a given (inverse) threshold p. The latter is defined
as the ratio of cut length to the perimeter (arc length) of the part excluding the cut.

4 Experiments

4.1 Experimental setup

Datasets. In most related work [25], even in recent methods [16, 19, 30], evaluation is
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only qualitative, while quantitative evaluation is often limited to datasets that are not public
like arbitrary subsets of MPEG-7 shape dataset [18, 23]. To our knowledge, there are two
public datasets with ground-truth from human subjects [5, 15]. The former by Liu et al. is
focusing on the classification of holes as structurally important or topological noise, which
is a different problem. We use the latter by de Winter and Wagemans, which evaluates
exactly segmentation of object outlines. It is a subset of the Snodgrass and Vanderwart
(S&V) everyday object dataset [28], consisting of 260 line drawings. The subset refers to 88
of the drawings, which have been converted to smooth outlines and each segmented by 39,5
subjects (psychology students) on average. For each shape there are 122,4 part-cuts, that is
3,1 cuts per subject on average. The same dataset, referred to as S&V, has been subsequently
used for quantitative comparison of different computational models [12, 13, 17]. An example
illustrating the cuts of all subjects on a single outline is shown in Fig. 4b.

Majority voting. Because part-cuts of human subjects are typically inconsistent, it is com-
mon practice to perform some form of majority voting before using the ground-truth to eval-
uate a computational model [25]. There are different alternatives, which take the form of
either a majority decomposition by clustering [12, 15], or spatial density used directly for
evaluation [17]. We follow the framework of Lewin et al. [12]. In particular, given two cuts
c1, c2 with endpoints {x1, y1}, {x2, y2} respectively, their arc distance is defined as

d(c1, c2) = min{`(x1, x2) + `(y1, y2), `(x1, y2) + `(y1, x2)}, (4)

where ` is the arc length function defined in section 2. Using this distance, cuts are subject
to average-linkage agglomerative clustering and a cluster is only kept if contains cuts from a
given proportion of the subjects. A representative cut is chosen from each cluster whose end-
points are averaged over the endpoints of individual cuts in the cluster, where averaging takes
place on the parametrization of the boundary curve. The result is a majority decomposition
per shape. An example is given in Fig. 4b,c.

Evaluation measures. Unfortunately, since quantitative evaluation is relatively new, there is
nearly one different protocol for every relevant publication. We use two different measures,
both of which assume a decomposition of shape X is represented by a partition A = {Ai}
of X , where both X and each part Ai are represented by sets of pixels in practice. The
Hamming distance [12] of partitions A,B is then

H(A,B) =
1

2|X| [h(A|B) + h(B|A)], (5)

where |X| is the area of X in pixels, h(A|B) =
∑
i |Ai \Bπi

| is the sum over all parts of A
of the area of part Ai not covered by its best match Bπi

in B, and the best match is defined
by πi = argmaxj |Ai ∩Bj |. On the other hand, the Rand Index (RI) [15] of A,B, is

R(A,B) =

(
n

2

)−1

(|PAB̄ |+ |PBĀ|), (6)

where PAB̄ = {(xi, xj) ∈ X2 : j > i ∧ A(xi) = A(xj) ∧ B(xi) 6= B(xj)} are the
ordered pairs of pixels in X that are in the same part of A and in different parts of B, and
A(xi) is the part of A where pixel xi belongs. It is also referred to as Jaccard measure [12].
We evaluate against both individual human subjects by averaging per shape and to majority
decompositions.
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Compared methods. We perform quantitative comparison to approximate convex decom-
position (ACD) [14], discrete contour evolution (DCE) [11], combined skeleton-boundary
features (SB) [30], flow discretization (FD) [6], constrained morphological decomposition
(MD) [10] and clustering-based ensemble (CBE) [13]. Quantitative results on all methods
are used as provided by Lewin et al. [13], which propose their own ensemble method CBE.
The latter is in fact applying to all previous five methods the same clustering approach that is
also applied to human subject decompositions as part of majority voting; therefore it may be
considered as a meta-decomposition method. Our own method is referred to as medial axis
decomposition (MAD). We also compare to human subjects, evaluated individually against
their own average or majority [15], as well as to the baseline case of not cutting anywhere.
Qualitative results, apart from ground truth (GT), are additionally compared to relatability
(REL) [19], convex shape secomposition (CSD) [16], minimum near-convex decomposition
(MNCD) [23] and computational model of short-cut rule (CSR) [17].
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Figure 6: Hamming (H) and RI (R) measures
vs. convexity tolerance θ for varying protru-
sion threshold p on S&V dataset.

average majority
H R H R

DCE 0.208 0.497 0.188 0.466
SB 0.163 0.402 0.131 0.335
MD 0.151 0.371 0.126 0.328
FD 0.145 0.350 0.112 0.267

ACD 0.128 0.323 0.092 0.251
MAD 0.126 0.317 0.096 0.247

MAD-opt 0.118 0.303 0.085 0.225

CBE 0.111 0.288 0.069 0.186
Human 0.128 0.312 0.093 0.245
Baseline 0.160 0.424 0.140 0.376

Table 1: Hamming (H) and RI (R)
measures for average and majority
voting on S&V dataset.

4.2 Results

Timing. Implemented in C++ and Matlab, MAD takes 78ms on average per S&V shape on
a single core, excluding medial axis preprocessing, which is 202ms on average.

Tuning. There are three parameters in MAD: medial scale threshold σ, convexity tolerance
θ, and (the inverse of) protrusion strength threshold p. After both quantitative tuning and
qualitative inspection, we choose σ = 2. Fig. 6 shows quantitative results for different
configurations of θ, p. Performance is best for p = 0.3 (lower is better for both measures
H and R), while the optimal range for θ is [45, 70] degrees. However, due to qualitative
inspection, we rather choose p = 0.45, θ = 40◦. Discrepancies are attributed to limitations
of the measures used [15].

Quantitative evaluation. Table 1 compares our method to a number of relevant methods.
On most measurements, our method is outperforming all individual methods and very close
to or even better than human subjects. As a meta-method, CBE is the best, but is also
significantly more complex and involves all the other five methods shown in the Table. It is
expected to perform well since it applies to algorithms the same idea of majority voting that
is applied to human subjects at ground truth construction. Because parameters were chosen
mostly based on qualitative criteria, we also include for reference the optimal performance
obtained with p = 0.35, θ = 50◦ (MAD-opt), which is always better than human subjects
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Table 2. Average dissimilarity measures over the benchmark database

all GT instances majority-voted

Hamming Jaccard Hamming Jaccard

ACD 0.128 0.323 0.092 0.251
IFD 0.145 0.350 0.112 0.267
MD 0.151 0.371 0.126 0.328
SD 0.163 0.402 0.131 0.335
DCE 0.208 0.497 0.188 0.466

ACD/IFD/MD/SD 0.114 0.302 0.069 0.190
ACD/IFD/MD/DCE 0.117 0.305 0.074 0.201
ACD/IFD/SD/DCE 0.118 0.311 0.069 0.188
ACD/MD/SD/DCE 0.117 0.305 0.076 0.206
IFD/MD/SD/DCE 0.121 0.317 0.076 0.206

ACD/IFD/MD/SD/DCE 0.111 0.288 0.069 0.186
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Fig. 4. Decompositions of four shapes generated by involved algorithms

decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter

Hamming (DH ) Jaccard (J)
Comb 0.069 0.186
ACD 0.092 0.251
IFD 0.112 0.267
MD 0.126 0.328
SD 0.131 0.335

DCE 0.188 0.466

Table 2. Average distances over the
benchmark database. Only the ’majority-
voted’ decomposition is used.

Comb ACD IFD MD SD DCE
Rank 1 2 3 4 5 6

Table 3. Comparison based on cut dis-
crepancy (DC).

performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.

Comb ACD

IFD MD

SD DCE

Figure 2. Decompositions of three shapes
generated by involved algorithms.
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For example, DCE produces a lot of unimportant cuts, which are not contained
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bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
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position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
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liminary comparison study using five shape decomposi-
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strated the usefulness of our approach. In particular, the
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posed framework is general enough to be extended to
the 3D case.

Comb ACD

IFD MD

SD DCE

Figure 2. Decompositions of three shapes
generated by involved algorithms.

Acknowledgement

The authors thank J.-M. Lien for providing his pro-
gram [8] for our tests.

References

[1] J. DeWinter and J. Wagemans. Segmentation of object
outlines into parts: A large-scale integrative study. Cog-
nition, 99:275–325, 2006.

[2] T. Dey et al. Shape segmentation and matching with
flow discretization. LNCS, 2748:25–36, 2003.

[3] D. Hoffman and W. Richards. Parts of recognition. Cog-
nition, 18(1-3):65–96, 1984.

[4] X. Jiang et al. Distance measures for image segmenta-
tion evaluation. EURASIP JASP, pages 1–10, 2006.

[5] D. H. Kim et al. A new shape decomposition scheme
for graph-based representation. Pattern Recognition,
38:673–689, 2005.

[6] L. J. Latecki and R. Lakämper. Convexity rule for
shape decomposition based on discrete contour evolu-
tion. CVIU, 73:441–454, 1999.

[7] S. Lewin, X. Jiang, and A. Clausing. A clustering-based
ensemble technique for shape decomposition. (in prepa-
ration).

[8] J.-M. Lien and N. M. Amato. Approximate convex de-
composition of polygons. Comput. Geom. Theory Appl.,
35:100–123, 2006.

[9] H. Liu et al. Convex shape decomposition. In Proc.
CVPR, pages 97–104, 2010.

[10] D. Martin et al. Learning to detect natural image bound-
aries using local brightness, color, and texture cues.
IEEE T-PAMI, 26(5):530–539, 2004.

[11] X. Mi and D. DeCarlo. Separating parts from 2d shapes
using relatability. In Proc. ICCV, pages 1–8, 2007.

[12] Z. Ren et al. Minimum near-convex decomposition for
robust shape representation. In Proc. ICCV, pages 303–
310, 2011.

[13] J. Zeng et al. 2D shape decomposition based on com-
bined skeleton-boundary features. In Proc. ISVC, pages
682–691, 2008.

3699

160 S. Lewin, X. Jiang, and A. Clausing

Table 2. Average dissimilarity measures over the benchmark database

all GT instances majority-voted

Hamming Jaccard Hamming Jaccard

ACD 0.128 0.323 0.092 0.251
IFD 0.145 0.350 0.112 0.267
MD 0.151 0.371 0.126 0.328
SD 0.163 0.402 0.131 0.335
DCE 0.208 0.497 0.188 0.466

ACD/IFD/MD/SD 0.114 0.302 0.069 0.190
ACD/IFD/MD/DCE 0.117 0.305 0.074 0.201
ACD/IFD/SD/DCE 0.118 0.311 0.069 0.188
ACD/MD/SD/DCE 0.117 0.305 0.076 0.206
IFD/MD/SD/DCE 0.121 0.317 0.076 0.206

ACD/IFD/MD/SD/DCE 0.111 0.288 0.069 0.186

ACD IFD

MD SD

DCE ACD/IFD/MD/SD/DCE

Fig. 4. Decompositions of four shapes generated by involved algorithms

decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
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4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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IFD and MD. The absence of this cut results from the
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tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
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In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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For example, DCE produces a lot of unimportant cuts, which are not contained
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Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter

Hamming (DH ) Jaccard (J)
Comb 0.069 0.186
ACD 0.092 0.251
IFD 0.112 0.267
MD 0.126 0.328
SD 0.131 0.335

DCE 0.188 0.466

Table 2. Average distances over the
benchmark database. Only the ’majority-
voted’ decomposition is used.

Comb ACD IFD MD SD DCE
Rank 1 2 3 4 5 6

Table 3. Comparison based on cut dis-
crepancy (DC).

performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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Figure 2. Decompositions of three shapes
generated by involved algorithms.
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Figure 12. More results

Figure 13. Decomposition examples. Row A contains five shapes
from [23]. Row B shows decompositions into neck-based and
limb-based parts [23]; Row C are the parts marked by human sub-
jects [23]; Row D shows the results using our algorithm.

can find a wider range of parts with a single rule, including
parts based on the short-cut rule [26] such as the tail of the
elephant. Having this diverse array of parts opens up new
applications in shape analysis.

6. Discussion and Conclusion
We have presented a new model for separating parts from

2D shapes, based on two cuts. We can cut the shape so
what remains has the simplest possible structure. Alterna-
tively, we can cut out the part so that the part itself takes
on a simple shape. These cuts are different, but both can be
characterized using the differential geometry of smoothed
local symmetries and relatability. They do not directly give
rise to a segmentation of the shape; a point inside the shape
may associate with the part, the remainder, neither, or both.

Our work relies on an appropriate model of relatabil-
ity, which is essentially a measure of contour grouping
strength—we use a simple model from [24]. One avenue for
improvement can come from studies on visual association

Figure 14. Ordering parts by radius can produce unintuitive results.
(The numbers on the parts indicate deletion order.)

fields, which suggest that other geometric properties are rel-
evant, such as the change in curvatures [12]. Psychophysi-
cal studies of 2D shape that explicitly represent transitions
could also produce interesting findings. One possibility is
to revisit the study by De Winter and Wagemans [5], and
explicitly question the user about transition boundaries.

Section 5 shows how our model can be applied to com-
pute the structural representation of a shape. However, the
proposed method, which orders the deletion by the radius,
can produce undesired results. Figure 14 shows two shapes
with similar structure to the leaf example in the second col-
umn of Figure 13—in these examples, however, the stem is
made thicker, so that the branch is deleted first. This results
in the main branch being split (inappropriately) into two
parts. Simple strategies that exclude transitions with non-
negative curvatures work for the branch on the left, but not
on the right. Thus, further investigations of disambiguat-
ing the part structure are necessary. We also intend to ex-
plore applications of our new part analysis in interfaces for
sketching, manipulating and depicting shape.

Acknowledgements

We thank Maneesh Agrawala, Manish Singh and Matthew
Stone for their insights and helpful discussions. This work
is partially supported by the National Science Foundation
through grant CCF-0541185.

References
[1] J. August, K. Siddiqi, and S. W. Zucker. Ligature instabilities

in the perceptual organization of shape. CVIU, 76(3):231–
243, 1999.

[2] H. Blum. Biological shape and visual science. Journal of
Theoretical Biology, 38:205–287, 1973.

[3] H. Blum and R. N. Nagel. Shape description using weighted
symmetric axis features. Pattern Recognition, 10(3):167–
180, 1978.

[4] M. Brady and H. Asada. Smoothed local symmetries and
their implementation. Int. J. of Robotics Research, 3:36–61,
1984.

[5] J. De Winter and J. Wagemans. Segmentation of object out-
lines into parts: a large-scale integrative study. Cognition,
99(3):275–325, Apr 2006.

[6] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. From
volumes to views: an approach to 3-D object recognition.

Figure 12. More results

Figure 13. Decomposition examples. Row A contains five shapes
from [23]. Row B shows decompositions into neck-based and
limb-based parts [23]; Row C are the parts marked by human sub-
jects [23]; Row D shows the results using our algorithm.

can find a wider range of parts with a single rule, including
parts based on the short-cut rule [26] such as the tail of the
elephant. Having this diverse array of parts opens up new
applications in shape analysis.

6. Discussion and Conclusion
We have presented a new model for separating parts from

2D shapes, based on two cuts. We can cut the shape so
what remains has the simplest possible structure. Alterna-
tively, we can cut out the part so that the part itself takes
on a simple shape. These cuts are different, but both can be
characterized using the differential geometry of smoothed
local symmetries and relatability. They do not directly give
rise to a segmentation of the shape; a point inside the shape
may associate with the part, the remainder, neither, or both.

Our work relies on an appropriate model of relatabil-
ity, which is essentially a measure of contour grouping
strength—we use a simple model from [24]. One avenue for
improvement can come from studies on visual association

Figure 14. Ordering parts by radius can produce unintuitive results.
(The numbers on the parts indicate deletion order.)

fields, which suggest that other geometric properties are rel-
evant, such as the change in curvatures [12]. Psychophysi-
cal studies of 2D shape that explicitly represent transitions
could also produce interesting findings. One possibility is
to revisit the study by De Winter and Wagemans [5], and
explicitly question the user about transition boundaries.

Section 5 shows how our model can be applied to com-
pute the structural representation of a shape. However, the
proposed method, which orders the deletion by the radius,
can produce undesired results. Figure 14 shows two shapes
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made thicker, so that the branch is deleted first. This results
in the main branch being split (inappropriately) into two
parts. Simple strategies that exclude transitions with non-
negative curvatures work for the branch on the left, but not
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ing the part structure are necessary. We also intend to ex-
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Fig. 7. Results comparison. The first row has five shapes from [9]. The second row shows the
results of our algorithm. The third row demonstrates the Prasad’s CDT decomposition result [15].
The last row is the results of neck-based and limbed-based method [9].

The result in [8] shows the trend that it was harder for observers to identify the
segments of shapes shown at the bottom and left side compared to those at the top and
right side of figure 4. For example, only about 40−50 percent of the observers identified
the defined segment in (row/column) 3,1 and 4,1 as ‘significant’.

Figure 5 depicts the parts of strongest protrusion resulting from our segmentation. It
shows a significant similarity to figure 4: the parts being detected as ‘strong’ parts in
our system are those more easily detected in 4. If a segment is significant enough, it is
likely to be decomposed as a part and the remaining forms another part (shown in row
1). In some cases our decomposition detects additional parts of comparable protrusion
strength, e.g. the first two shapes in row 2. Perceptually, these are comparable to the
tested parts. In the case of weak parts (fig. 5, (row/column) 3,1 and 4,1), the parts can
not be detected. Hence the entire result follows the trend mentioned above.

4.2 Experiment on Different Shapes

This experiment shows decompositions of different shapes, taken from [9], [12] and
[15]. Figure 6 shows some results of the proposed algorithm. The consistent
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Fig. 10 compares our methods with Reeb graph (col-
umn B). The problem with Reeb graph is that it can just
capture partial information of an object. Since our method
utilizes multiple Reeb graphs, thus, more information, es-
pecially all important information is preserved. We observe
that no Reeb graph theory exists that allows for combination
of multiple Reeb graphs. Column D illustrates the convex
graph obtained by our method. In Fig. 10, column A con-
tains five shapes from MPEG-7 shape database. Column B
illustrates their Reeb graphs, using height functions along
vertical direction as Morse functions. Column C shows the
decomposition results by our method, red lines are the cuts.
Column D illustrates the convex graphs of these shapes.
According to (4), when the costs of all cuts are nearly iden-
tical, we seek for a minimal number of cuts. The second
image (fork) illustrates such situation. There are just four
cuts; the second branch and the center part are in one part.

Fig. 11 compares the approximate convex results of
our method with the method proposed by Jyh-Ming Lien
[11]. The second row shows the decomposed results of our
method. Both methods can limit the concavity of the de-
composed parts, although the definitions of concavity are
different. The advantage of our method is that it can guar-
antee the number of the cuts is minimal.

Fig. 12 demonstrates more 2D decomposed shapes from
MPEG-7 shape database. For some objects, we can decom-
pose them into meaningful parts; but in many situations, it
will decompose a meaningful part into many approximate
convex sub-parts.

Fig. 13 demonstrates some decomposed 3D shapes.
Most of the obtained parts seem meaningful. However, in
the human model, the body and a leg belong to the same
part; this is because the aim of our method is to decompose
an object into approximate convex parts, it cannot guarantee
that all decomposed parts are meaningful.

Figure 10. Reeb graphs and convex graphs. Column A contains
five shapes from MPEG-7 shape database. Column B illustrates
their Reeb graphs, using height functions along vertical direction
as Morse functions. Column C shows the decomposition results
by our method, red lines are the final cuts. Column D illustrates
the convex graphs of these shapes
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TABLE I: Comparison of decomposition results on S & V data set. H represents
the overall similarity between C and human decomposition. Higher is better.

Method |C| µmasked µunmasked H
ACD [17] 4.18 3.49 0.69 6.85
CSD [18] 3.80 3.09 0.78 4.72

Ours 4.07 3.77 0.66 8.54

(a) (b)

(c) (d)

Fig. 7: The decomposition results by the proposed method, with (a) tDCE = 0.1, (b)
tDCE = 0.5, (c) tDCE = 1 and (d) tDCE = 3, respectively. The simplified polygons
are in blue dashed lines while the determined part-cuts are in red solid lines.

possess clearly defined perceptual meanings and have been
discussed accordingly when they are introduced. Other pa-
rameters include the stopping parameter tDCE of DCE, the
number of directions nd for generating single-minimum part-
cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ

TABLE II: The score of H (left) and |C| (right) for the S & V data set based on
different pairs of parameters.

th1

nd 8 16 24 32

0.2 8.48 / 4.23 8.44 / 4.51 8.40 / 4.61 8.51 / 4.82
0.4 8.59 / 3.93 8.54 / 4.07 8.59 / 4.23 8.35 / 4.32
0.6 8.33 / 3.86 8.35 / 3.95 8.34 / 4.08 8.10 / 4.18
0.8 8.33 / 3.78 8.28 / 3.91 8.24 / 3.98 8.01 / 4.10

Fig. 9: From top to bottom: decomposition results of [22], [18], [17] and our method.

increases. The highest H is obtained when |C| is three times
larger than the psychophysical results. It is lower when |C|
reaches 3.97 with τ being around 10. In (b), H keeps lower
than 5, and |C| reaches 3.97 with ε being around 0.03.

We also evaluate the influence of the other two parameters
nd and th1 on the S & V data set. In the experiments, nd
varies from 8 to 32 with an increase of 8 at each step and th1
ranges from 0.2 to 0.8 with an increase of 0.2 at each step.

The results are reported in Table II. For H, the higher
is better, and for |C|, the closer to 3.97 is better. The best
parameter settings are nd = 8 and th1 = 0.4. We can see that
nd = 16 is usually sufficient for generating single-minimum
part-cut hypotheses. When nd > 16, not only the complexity
increases, but the decomposition results are also less consistent
with the psychological results.

C. More results

To further evaluate the visual naturalness of the proposed
algorithm, we compare the decomposition results of [22], [18],
[17] and our method in Fig. 9. As we can see, the first and
the fourth row produce similar and intuitive results, while the
second and the third row may parse a long bend (e.g., the tail
of the kangaroo) into parts.

Fig. 10 compares the decomposition results of some shapes
from the MPEG-7 shape database produced by ACD [17],
CSD [18] and our method. It can be seen that our method
produces less part-cuts and the results are more natural.

Fig. 11 demonstrates the robustness of our method in the
presence of noise, occlusion, articulation and rotation. We
deal with noise by increasing tDCE. As in the first column,
the noised “T” shape is firstly de-noised to a closed polygon
(drawn in red lines) and then decomposed into two parts. We
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cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ
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increases. The highest H is obtained when |C| is three times
larger than the psychophysical results. It is lower when |C|
reaches 3.97 with τ being around 10. In (b), H keeps lower
than 5, and |C| reaches 3.97 with ε being around 0.03.

We also evaluate the influence of the other two parameters
nd and th1 on the S & V data set. In the experiments, nd
varies from 8 to 32 with an increase of 8 at each step and th1
ranges from 0.2 to 0.8 with an increase of 0.2 at each step.

The results are reported in Table II. For H, the higher
is better, and for |C|, the closer to 3.97 is better. The best
parameter settings are nd = 8 and th1 = 0.4. We can see that
nd = 16 is usually sufficient for generating single-minimum
part-cut hypotheses. When nd > 16, not only the complexity
increases, but the decomposition results are also less consistent
with the psychological results.

C. More results

To further evaluate the visual naturalness of the proposed
algorithm, we compare the decomposition results of [22], [18],
[17] and our method in Fig. 9. As we can see, the first and
the fourth row produce similar and intuitive results, while the
second and the third row may parse a long bend (e.g., the tail
of the kangaroo) into parts.

Fig. 10 compares the decomposition results of some shapes
from the MPEG-7 shape database produced by ACD [17],
CSD [18] and our method. It can be seen that our method
produces less part-cuts and the results are more natural.

Fig. 11 demonstrates the robustness of our method in the
presence of noise, occlusion, articulation and rotation. We
deal with noise by increasing tDCE. As in the first column,
the noised “T” shape is firstly de-noised to a closed polygon
(drawn in red lines) and then decomposed into two parts. We
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MPEG-7 ψ=0.005R ψ=0.01R ψ=0.03R ψ=0.06R
dataset ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓

bat 14.3% 8.9% 20.8% 11.3% 16.2% 6.8% 8.6% 6.5%
beetle 23.8% 10.3% 22.9% 9.0% 21.9% 16.0% 19.3% 14.4%
bird 18.5% 13.6% 23.8% 12.5% 12.8% 7.6% 17.4% 10.6%

butterfly 4.4% 5.8% 13.1% 7.2% 16.9% 8.8% 32.7% 12.9%
camel 16.1% 10.5% 15.2% 3.3% 21.1% 9.5% 21.3% 4.8%

carriage 5.5% 3.7% 13.8% 9.2% 15.6% 9.5% 18.4% 13.3%
cattle 24.9% 14.6% 24.5% 10.7% 27.4% 8.9% 23.0% 12.3%

chicken 19.0% 10.0% 23.1% 15.2% 24.0% 10.5% 3.1% 5.2%
chopper 8.9% 7.7% 16.2% 10.4% 22.1% 10.7% 17.4% 11.3%
crown 16.0% 9.2% 20.7% 11.9% 27.8% 14.6% 19.4% 16.7%
deer 18.0% 14.5% 24.2% 10.5% 15.3% 4.2% 22.6% 13.3%
dog 23.8% 15.4% 18.8% 7.6% 24.5% 9.2% 15.7% 10.5%

elephant 24.1% 12.0% 24.0% 8.9% 24.9% 9.7% 25.2% 7.8%
fly 11.9% 9.2% 8.9% 5.6% 4.2% 3.9% 10.6% 8.4%

horse 20.1% 8.0% 23.8% 5.1% 19.8% 1.1% 18.8% 6.1%
horseshoe 26.1% 18.6% 21.9% 11.7% 23.5% 14.8% 12.2% 12.2%

lizard 18.2% 10.4% 15.9% 10.0% 27.5% 15.2% 11.7% 7.3%
Misk 29.8% 30.7% 24.2% 11.9% 25.8% 20.3% 13.2% 15.4%

Mickey 24.6% 13.4% 14.0% 10.5% 19.8% 12.9% 17.3% 8.5%
spring 22.6% 12.6% 25.1% 13.7% 24.5% 15.8% 25.7% 6.9%

Table 2. The average reduction rate of MNCD comparing with
ACD [10] and CSD [12], on the MPEG-7 dataset, where R is the
radius of the shape’s minimum enclosing disk.

Figure 7. The first row shows the decomposition results of [14],
and the second row shows the results of MNCD.

by Mi and Decarlo [14]. Mi’s method is specifically de-
signed to decompose 2D shapes into natural parts. The first
row are the decomposition results of their method, and the
second row are the results of MNCD. As we can see, when
considering the minima rule and short cut rule in our formu-
lation, our method decomposes shapes into parts with high
visual naturalness comparable to [14], such as the legs, head
and body of the animal, the leaf and stem of the tree, etc.

In Fig.11, more comparisons among ACD [10], CSD
[12] and our method are provided, with ψ=0.03R. The
decompositions of our method produce the least and more
natural recognition primitives. At this concavity tolerance,
MNCD decomposes the animals into primitives such as
head, body, legs and tail, and avoid decomposing them into
redundant parts as [10, 12].

Without introducing redundant parts, MNCD is robust to
local distortions, as shown in the first row of Fig.12. The ro-
bustness of our method is more obvious when there are large
local distortions as shown in the last row of Fig.1, while the
existing decomposition methods produce many redundant
noise parts. Besides, our MNCD imposes two perception
rules to guide the decomposition, thus it produces more nat-
ural parts, which makes MNCD robust to shape deforma-
tion, as illustrated in the second row of Fig.12.

Figure 8. Illustration of our hand gesture recognition using the
Kinect depth camera and MNCD. The first and second columns
are the color and depth image in the new dataset; the third column
is the image segmentations of hands; the last column is the MNCD
decompositions of the hand shapes.

Thanks to the robust shape representation of our MNCD,
it has a high potential for shape-based visual recognition
tasks. In the next section, we apply it to hand gesture recog-
nition.

4.2. Hand Gesture Recognition

For hand gesture recognition based HCI [5], usually the
color, texture, shading, and context information are not
robust for successful recognition, while the shape feature
alone is often sufficient. However, the vision-based hand
gesture recognition is extremely hard, because of two pri-
mary problems: 1. It is hard to segment the hand out of the
image with cluttered background; 2. Even with the shape of
a hand, existing representations are not robust enough for
gesture recognition. For example, the contour-based and
the skeleton-based representations can be affected by large
local noises.

With the advent of Kinect depth camera [1], we can
accurately segment the hand shape using both image and
depth information, as shown in Fig.8. After that, we can
use MNCD to robustly represent the hand shape for ges-
ture recognition. With the Kinect depth camera, we col-
lect a new hand gesture dataset with both color images and
depth maps. Our dataset contains 3 hand gesture categories,
namely Rock, Paper and Scissors, each category has 50
samples. For each category, an example is shown in the
first two columns of Fig.8.

However, even with the help from the Kinect depth cam-
era, the image segmentation of the hand is not perfect. Due
to low-resolution, it easily introduces large local distortions
or other types of noises on the contour, as shown in the third
column of Fig.8. However, our MNCD is robust to handle
most of the variations, and decomposes hand shapes into
natural primitives such as fingers and palm. We can recog-
nize the hand gesture among Rock, Paper, Scissors by only
counting the number of parts. Suppose k is the number of
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4.2. Hand Gesture Recognition

For hand gesture recognition based HCI [5], usually the
color, texture, shading, and context information are not
robust for successful recognition, while the shape feature
alone is often sufficient. However, the vision-based hand
gesture recognition is extremely hard, because of two pri-
mary problems: 1. It is hard to segment the hand out of the
image with cluttered background; 2. Even with the shape of
a hand, existing representations are not robust enough for
gesture recognition. For example, the contour-based and
the skeleton-based representations can be affected by large
local noises.

With the advent of Kinect depth camera [1], we can
accurately segment the hand shape using both image and
depth information, as shown in Fig.8. After that, we can
use MNCD to robustly represent the hand shape for ges-
ture recognition. With the Kinect depth camera, we col-
lect a new hand gesture dataset with both color images and
depth maps. Our dataset contains 3 hand gesture categories,
namely Rock, Paper and Scissors, each category has 50
samples. For each category, an example is shown in the
first two columns of Fig.8.

However, even with the help from the Kinect depth cam-
era, the image segmentation of the hand is not perfect. Due
to low-resolution, it easily introduces large local distortions
or other types of noises on the contour, as shown in the third
column of Fig.8. However, our MNCD is robust to handle
most of the variations, and decomposes hand shapes into
natural primitives such as fingers and palm. We can recog-
nize the hand gesture among Rock, Paper, Scissors by only
counting the number of parts. Suppose k is the number of

308

MPEG-7 ψ=0.005R ψ=0.01R ψ=0.03R ψ=0.06R
dataset ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓

bat 14.3% 8.9% 20.8% 11.3% 16.2% 6.8% 8.6% 6.5%
beetle 23.8% 10.3% 22.9% 9.0% 21.9% 16.0% 19.3% 14.4%
bird 18.5% 13.6% 23.8% 12.5% 12.8% 7.6% 17.4% 10.6%

butterfly 4.4% 5.8% 13.1% 7.2% 16.9% 8.8% 32.7% 12.9%
camel 16.1% 10.5% 15.2% 3.3% 21.1% 9.5% 21.3% 4.8%

carriage 5.5% 3.7% 13.8% 9.2% 15.6% 9.5% 18.4% 13.3%
cattle 24.9% 14.6% 24.5% 10.7% 27.4% 8.9% 23.0% 12.3%

chicken 19.0% 10.0% 23.1% 15.2% 24.0% 10.5% 3.1% 5.2%
chopper 8.9% 7.7% 16.2% 10.4% 22.1% 10.7% 17.4% 11.3%
crown 16.0% 9.2% 20.7% 11.9% 27.8% 14.6% 19.4% 16.7%
deer 18.0% 14.5% 24.2% 10.5% 15.3% 4.2% 22.6% 13.3%
dog 23.8% 15.4% 18.8% 7.6% 24.5% 9.2% 15.7% 10.5%

elephant 24.1% 12.0% 24.0% 8.9% 24.9% 9.7% 25.2% 7.8%
fly 11.9% 9.2% 8.9% 5.6% 4.2% 3.9% 10.6% 8.4%

horse 20.1% 8.0% 23.8% 5.1% 19.8% 1.1% 18.8% 6.1%
horseshoe 26.1% 18.6% 21.9% 11.7% 23.5% 14.8% 12.2% 12.2%
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spring 22.6% 12.6% 25.1% 13.7% 24.5% 15.8% 25.7% 6.9%

Table 2. The average reduction rate of MNCD comparing with
ACD [10] and CSD [12], on the MPEG-7 dataset, where R is the
radius of the shape’s minimum enclosing disk.

Figure 7. The first row shows the decomposition results of [14],
and the second row shows the results of MNCD.

by Mi and Decarlo [14]. Mi’s method is specifically de-
signed to decompose 2D shapes into natural parts. The first
row are the decomposition results of their method, and the
second row are the results of MNCD. As we can see, when
considering the minima rule and short cut rule in our formu-
lation, our method decomposes shapes into parts with high
visual naturalness comparable to [14], such as the legs, head
and body of the animal, the leaf and stem of the tree, etc.

In Fig.11, more comparisons among ACD [10], CSD
[12] and our method are provided, with ψ=0.03R. The
decompositions of our method produce the least and more
natural recognition primitives. At this concavity tolerance,
MNCD decomposes the animals into primitives such as
head, body, legs and tail, and avoid decomposing them into
redundant parts as [10, 12].

Without introducing redundant parts, MNCD is robust to
local distortions, as shown in the first row of Fig.12. The ro-
bustness of our method is more obvious when there are large
local distortions as shown in the last row of Fig.1, while the
existing decomposition methods produce many redundant
noise parts. Besides, our MNCD imposes two perception
rules to guide the decomposition, thus it produces more nat-
ural parts, which makes MNCD robust to shape deforma-
tion, as illustrated in the second row of Fig.12.

Figure 8. Illustration of our hand gesture recognition using the
Kinect depth camera and MNCD. The first and second columns
are the color and depth image in the new dataset; the third column
is the image segmentations of hands; the last column is the MNCD
decompositions of the hand shapes.

Thanks to the robust shape representation of our MNCD,
it has a high potential for shape-based visual recognition
tasks. In the next section, we apply it to hand gesture recog-
nition.

4.2. Hand Gesture Recognition

For hand gesture recognition based HCI [5], usually the
color, texture, shading, and context information are not
robust for successful recognition, while the shape feature
alone is often sufficient. However, the vision-based hand
gesture recognition is extremely hard, because of two pri-
mary problems: 1. It is hard to segment the hand out of the
image with cluttered background; 2. Even with the shape of
a hand, existing representations are not robust enough for
gesture recognition. For example, the contour-based and
the skeleton-based representations can be affected by large
local noises.

With the advent of Kinect depth camera [1], we can
accurately segment the hand shape using both image and
depth information, as shown in Fig.8. After that, we can
use MNCD to robustly represent the hand shape for ges-
ture recognition. With the Kinect depth camera, we col-
lect a new hand gesture dataset with both color images and
depth maps. Our dataset contains 3 hand gesture categories,
namely Rock, Paper and Scissors, each category has 50
samples. For each category, an example is shown in the
first two columns of Fig.8.

However, even with the help from the Kinect depth cam-
era, the image segmentation of the hand is not perfect. Due
to low-resolution, it easily introduces large local distortions
or other types of noises on the contour, as shown in the third
column of Fig.8. However, our MNCD is robust to handle
most of the variations, and decomposes hand shapes into
natural primitives such as fingers and palm. We can recog-
nize the hand gesture among Rock, Paper, Scissors by only
counting the number of parts. Suppose k is the number of
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In Fig.11, more comparisons among ACD [10], CSD
[12] and our method are provided, with ψ=0.03R. The
decompositions of our method produce the least and more
natural recognition primitives. At this concavity tolerance,
MNCD decomposes the animals into primitives such as
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local distortions, as shown in the first row of Fig.12. The ro-
bustness of our method is more obvious when there are large
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decompositions of the hand shapes.

Thanks to the robust shape representation of our MNCD,
it has a high potential for shape-based visual recognition
tasks. In the next section, we apply it to hand gesture recog-
nition.

4.2. Hand Gesture Recognition

For hand gesture recognition based HCI [5], usually the
color, texture, shading, and context information are not
robust for successful recognition, while the shape feature
alone is often sufficient. However, the vision-based hand
gesture recognition is extremely hard, because of two pri-
mary problems: 1. It is hard to segment the hand out of the
image with cluttered background; 2. Even with the shape of
a hand, existing representations are not robust enough for
gesture recognition. For example, the contour-based and
the skeleton-based representations can be affected by large
local noises.

With the advent of Kinect depth camera [1], we can
accurately segment the hand shape using both image and
depth information, as shown in Fig.8. After that, we can
use MNCD to robustly represent the hand shape for ges-
ture recognition. With the Kinect depth camera, we col-
lect a new hand gesture dataset with both color images and
depth maps. Our dataset contains 3 hand gesture categories,
namely Rock, Paper and Scissors, each category has 50
samples. For each category, an example is shown in the
first two columns of Fig.8.

However, even with the help from the Kinect depth cam-
era, the image segmentation of the hand is not perfect. Due
to low-resolution, it easily introduces large local distortions
or other types of noises on the contour, as shown in the third
column of Fig.8. However, our MNCD is robust to handle
most of the variations, and decomposes hand shapes into
natural primitives such as fingers and palm. We can recog-
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TABLE I: Comparison of decomposition results on S & V data set. H represents
the overall similarity between C and human decomposition. Higher is better.

Method |C| µmasked µunmasked H
ACD [17] 4.18 3.49 0.69 6.85
CSD [18] 3.80 3.09 0.78 4.72

Ours 4.07 3.77 0.66 8.54

(a) (b)

(c) (d)

Fig. 7: The decomposition results by the proposed method, with (a) tDCE = 0.1, (b)
tDCE = 0.5, (c) tDCE = 1 and (d) tDCE = 3, respectively. The simplified polygons
are in blue dashed lines while the determined part-cuts are in red solid lines.

possess clearly defined perceptual meanings and have been
discussed accordingly when they are introduced. Other pa-
rameters include the stopping parameter tDCE of DCE, the
number of directions nd for generating single-minimum part-
cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ

TABLE II: The score of H (left) and |C| (right) for the S & V data set based on
different pairs of parameters.

th1

nd 8 16 24 32

0.2 8.48 / 4.23 8.44 / 4.51 8.40 / 4.61 8.51 / 4.82
0.4 8.59 / 3.93 8.54 / 4.07 8.59 / 4.23 8.35 / 4.32
0.6 8.33 / 3.86 8.35 / 3.95 8.34 / 4.08 8.10 / 4.18
0.8 8.33 / 3.78 8.28 / 3.91 8.24 / 3.98 8.01 / 4.10

Fig. 9: From top to bottom: decomposition results of [22], [18], [17] and our method.

increases. The highest H is obtained when |C| is three times
larger than the psychophysical results. It is lower when |C|
reaches 3.97 with τ being around 10. In (b), H keeps lower
than 5, and |C| reaches 3.97 with ε being around 0.03.

We also evaluate the influence of the other two parameters
nd and th1 on the S & V data set. In the experiments, nd
varies from 8 to 32 with an increase of 8 at each step and th1
ranges from 0.2 to 0.8 with an increase of 0.2 at each step.

The results are reported in Table II. For H, the higher
is better, and for |C|, the closer to 3.97 is better. The best
parameter settings are nd = 8 and th1 = 0.4. We can see that
nd = 16 is usually sufficient for generating single-minimum
part-cut hypotheses. When nd > 16, not only the complexity
increases, but the decomposition results are also less consistent
with the psychological results.

C. More results

To further evaluate the visual naturalness of the proposed
algorithm, we compare the decomposition results of [22], [18],
[17] and our method in Fig. 9. As we can see, the first and
the fourth row produce similar and intuitive results, while the
second and the third row may parse a long bend (e.g., the tail
of the kangaroo) into parts.

Fig. 10 compares the decomposition results of some shapes
from the MPEG-7 shape database produced by ACD [17],
CSD [18] and our method. It can be seen that our method
produces less part-cuts and the results are more natural.

Fig. 11 demonstrates the robustness of our method in the
presence of noise, occlusion, articulation and rotation. We
deal with noise by increasing tDCE. As in the first column,
the noised “T” shape is firstly de-noised to a closed polygon
(drawn in red lines) and then decomposed into two parts. We
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TABLE I: Comparison of decomposition results on S & V data set. H represents
the overall similarity between C and human decomposition. Higher is better.

Method |C| µmasked µunmasked H
ACD [17] 4.18 3.49 0.69 6.85
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possess clearly defined perceptual meanings and have been
discussed accordingly when they are introduced. Other pa-
rameters include the stopping parameter tDCE of DCE, the
number of directions nd for generating single-minimum part-
cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ
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are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.
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part-cut hypotheses. When nd > 16, not only the complexity
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Fig� �
� A comparisonof computedparts and perceived parts for a va�
riety of biological and nonsense shapes� The shapes are a representa�
tive subset of those used for the psychophysical experiments reported
in ��	
� Each box depicts the original shape �left�� the parts com�
puted by applying our algorithm �middle�� and the parts perceived
by a majority of the �� subjects �right�� Note that for shapes �A�
through �H�� the computed and perceived parts are in exact agree�
ment� Shapes �I�� �J�� and �K� illustrate discrepancies that occur due
to the existence of bent limbs� e�g�� those manifested as the kanga�
roo�s tail and the elephant�s trunk� Shape �L� illustrates the limits of
the algorithm�s performance when parts of low salience are admitted�
here a weak� neck which breaks o� the top part of the rabbit�s front
ear is computed� but is not perceived�

VIII� Discussion

The validity of our partitioning scheme can be mea�
sured against the principles it sought to satisfy� as well
as against human performance� Whereas we have previ�
ously discussed the former� Figure �� illustrates the lat�
ter� Despite a high degree of correspondence between com�
puted parts and perceived parts� we have observed two
minor classes of discrepancies between them� �� those due
to part�bend interactions� and �� those due to cognitive
knowledge of the underlying object� First� consider the
part�bend axis of Figure �� Observe how the perception of
the leftmost shape as a �sausage� with four parts changes
continuously to one of a snake with a single bent part�
Now consider Figure �� whereas perceptual evidence for
�trunks� and �tails� as parts is strong for the shapes on
the right of each box� leading to clearly partitioned limbs�
the evidence is greatly diminished for the shapes on the
left� due to bending� Our psychophysical experiments in�
dicate that in such situations� whereas subjects continue
to place one endpoint of a part�line at the negative cur�
vature minimum� the position of the second endpoint is
somewhat arbitrary 	��� Such parts can only be recov�

ered under a more comprehensive framework 	���� Second�
cognitive knowledge in�uences part perception� e�g�� famil�
iarity with the underlying object for a recognizable shape�
and the existence of a semantic vocabulary for describing
its various components may cause a subject to break o�
parts� even when perceptual evidence is weak 	���

IX� Conclusion

In conclusion� we comment on the relationship between
partitioning and recognition� Thus far� we have assumed
the availability of a �D shape� that which comes from the
projection of the occluding contour of an object� However�
it is well recognized that under general conditions the seg�
mentation of an image into regions corresponding to the
projections of distinct objects is not an easy task� In the
face of this di�culty� how can partitioning proceed� It is
clear that since segmentation is a di�cult task� a parti�
tioning scheme should be able to handle errors in the seg�
mentation process� partially correct segmentations� etc� To
this end the limbs�and�necks scheme� being robust to local
deformations and stable with slight global deformations�
is appropriately designed� A more complete answer� how�
ever� lies in viewing parts as an intermediate representation
that allows for the �ow of bottom�up as well as top�down
information� Consider that since part computations are lo�
cal� edges of the appropriate polarity can interact to form
necks and limbs prior to obtaining a segmentation of the
object� Figures �� �� and ��� leading to a �parts receptive
�eld�� This constitutes the bottom�up �ow of information�
i�e�� from local edge hypotheses to the more global part
hypotheses� Now� part hypotheses can in turn play an
integral role in the segmentation process through the top�
down �ow of information� i�e�� a combination of likely parts
can lead to an object hypothesis� followed by a segmenta�
tion hypothesis for the image� Such a notion of parts may
be key in resolving the bottom�up�top�down bottleneck of
recognition�
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Figure 7: Qualitative results on representative shapes of S&V [5] (left) and Kimia [25] (right)
datasets for a number of methods, including ground truth (GT), depicted as in Fig. 4c.

and not too far from CBE. All results are inferior on average evaluation against individual
subjects, which is expected as subjects are not always consistent. It is interesting that SB,
DCE are close to or even worse than the baseline of not cutting anywhere.

Qualitative evaluation. Fig. 7 illustrates qualitative results on a number of representative
shapes. Our method gives natural results on Kimia dataset and is the only one to capture
the ground truth for the bottom part of the rabbit correctly. It often tends to prefer cuts near
the mouth than on the neck. This is attributed to the shortcut rule which we observe is not
always enough, but our method is very open to using other measures. S&V is harder, but
still MAD yields the highest quality results comparing to the other individual methods. That
is, apart from the ensemble method CBE, which seeks consensus among all others.

5 Discussion

Both qualitative and quantitative evaluation suggests that an extremely simple computational
model based on an appropriate representation can be competitive comparing to more com-
plex models or ensemble methods. More than that, our model is inherently connected to
most rules suggested by human vision studies and highlights their connection. There are
more aspects that we have explored in the same model, which we have not been able to
expose here due to limited space, including an extended definition of concave corners that
captures semi-local boundary arcs and a proximity measure on part-cuts. Other aspects that
could be naturally incorporated are detection of bends, continuation of boundaries across
parts and local symmetry beyond what is captured by the medial axis. The fact that part-cut
selection is based on simple local decisions will enable the investigation of a more general
model beyond closed curves towards local feature detection on arbitrary natural images. For
instance, bitangents on isophotes (level sets of intensity) [21] can be seen as cuts on either
figure or ground shape, while distance map saddle points [2] correspond to necks [25]; our
work can provide for a richer set of cuts hence candidate local features.
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