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Abstract
We present a generalization of the wide baseline two view matching problem - WXBS,

where X stands for a different subset of “wide baselines" in acquisition conditions such as
geometry, illumination, sensor and appearance. We introduce a novel dataset of ground-
truthed image pairs which include multiple "wide baselines" and show that state-of-the-
art matchers fail on almost all image pairs from the set. A novel matching algorithm
for addressing the WXBS problem is introduced and we show experimentally that the
WXBS-M matcher dominates the state-of-the-art methods both on the new and existing
datasets.

1 Introduction

Figure 1: Examples of WXBS problems.

The Wide Baseline Stereo (WBS) match-
ing problem, first formulated by Pritchett
and Zisserman [32], has received signifi-
cant attention in the last 15 years [26, 40].
Progressively more challenging two- and
multi-view problems have been success-
fully handled [40]; for instance, recent algo-
rithms [30], [28] have successfully matched
views of planar objects with out-of-plain
orientation differences of up to 160 degrees.

Orientation and viewpoint "baselines"
are not the only factors influencing the
complexity of establishing geometric corre-
spondence between a pair of images. The
standard physical models of image formation and acquisition consider the effects of illumi-
nation, the properties of the transparent medium light rays pass through in the scene, surface
properties of objects and properties of the imaging sensors.
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In the paper, we consider the generalization of Wide (geometric) Baseline Stereo to
WXBS, a two-view image matching problem where two or more of the image formation and
acquisition properties significantly change, i.e. they have a wide baseline. The "significant
change" distinguishes the problem from image registration, where dense correspondence is
routinely established between multi-modal images. For registration, various complex trans-
formations have been considered, see Zitová and Flusser [46]. Operationally, the "wide
baseline" means "where local, gradient-descent type" methods fail.

The following single wide baseline stereo, or correspondence, problems and their com-
binations are considered: illumination (WLBS) – difference in position, direction, number,
intensity and wavelength of light sources; geometry (WGBS) – difference in camera and
object pose, scale and resolution - the “classical” WBS; sensor (WSBS) – change in sensor
type: visible, IR, MR; noise, image preprocessing algorithms inside the camera, etc; appear-
ance (WABS) – difference in the object appearance because of time or seasonal changes,
occlusions, turbulent air, etc. We denote matching problems, or, equivalently, image pairs,
with a significant change in only one of the groups listed as W1BS; if a combination of
effects is present, as WXBS. To our knowledge, almost all published image datasets and
algorithms are in the W1BS class[26], [30], [42],[3],[17], [18].

We present a new public dataset1. with ground truth which combines the above-mentioned
challenges and contains both W2BS image pairs including viewpoint and appearance, view-
point and illumination, viewpoint and sensor, illumination, and appearance change and W3BS
– problems where viewpoint, appearance and lighting differ significantly.

We show that state-of-the-art matchers performs poorly on the introduced image pairs,
and propose a novel algorithm which significantly outperforms the state-of-the-art without a
dramatic loss of speed.

The paper is organised as follows. In Section 2, relevant datasets and matching algo-
rithms are reviewed. The novel WXBS matching algorithm is then introduced in Section 4.
The dataset for WXBS problems and the associated evaluation protocol are presented in Sec-
tion 3. Experimental results are described in Section 5. The paper is concluded in Section 6.

2 Related Work
Viewpoint change. The stereo problem – matching of two images taken from different
viewpoints – has always received significant attention of the computer vision community as
it is a critical component of the structure from motion task. For images taken concurrently,
in both the calibrated and uncalibrated set up, the problem for a narrow baseline is mature
[40] and can be now solved in real-time and on a large scale [2].

The standard wide-baseline matching evaluation focuses on the feature detection and
description stages[26]. However, the methodology and datasets of [26] are limited to im-
ages related by a homography. Attempts have been made to extend the evaluation to 3D
scenes [1, 29], but they are significantly less popular. Neither of the above-mentioned proto-
cols evaluates the performance of the matching stage and thus of the full matching pipeline.

As a reference, we adopted two recent algorithms with good reported performance and
freely available binaries. The ASIFT method [30] method synthetically transforms images in
order to enlarge the matching range of the DoG detector. This idea has been further extended
in MODS [27] which incorporates multiple detectors and adopts an iterative approach that

1Available at http://cmp.felk.cvut.cz/wbs/index.html
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attempts to minimize the matching time. Both algorithms are able to match images with
extreme effects induced by viewpoint change. Mishkin et al. [27] introduced the extreme-
viewpoint dataset that is used to test the ability of the newly proposed WxBS matcher to
handle viewpoint changes.
Multimodal image analysis is needed for the alignment of images acquired by different
sensors. Most commonly, the problem is encountered in remote sensing and in medical
imaging. For instance, in [14], red-free and fluorescein angiographic images are matched.
Similarly, for different modes of magnetic resonance imaging, modality of the captured data
depends on the magnetic properties of the scanned chemical compound. In remote sensing,
multimodal matching involves e.g. registering visual spectrum images against near infrared
images (NIR) or Long-Wave infrared (LWIR).

Multimodal registration methods are usually classified as area-based or feature-based
methods. Since we are interested in extending the challenges into multiple-baseline varia-
tions, area-based methods are omitted as they lack scale invariance [14].

Feature-based approaches [42] and [14] identify the main issues of existing algorithms
in the context of multimodal matching as the selection of the the response threshold, i.e.
the minimal image contrast which triggers the detector. In [42], the Difference of Gaussian
(DoG) [22] response is normalised by local average image intensity in cases when the image
contrast is low. Ghassabi et al. [14] present a variant of the DoG detector which sets a
local response threshold for each image cell on the basis of the image entropy. In [9], it is
argued that Harris detector is more suitable for this task as the information along boundaries
is preserved in cases of different image modalities.

The main issue of the widely used SIFT descriptor [22] in the context of multimodal
images is the lack of invariance to gradient reversal. Two approaches to address this issue
have been proposed in the literature. The first generates a second SIFT descriptor of the
feature for a gradient reversed image by SIFT vector reordering [15]. We refer to this method
as inverted-SIFT. The second method [9], denoted as half-SIFT, limits local image gradients
directions to 〈0,π) by treating opposite gradient directions as identical. Unlike the inverted-
SIFT, this method allows matching of images that are only partially inverted (per patch),
i.e.. some gradient directions stay the same while other are reversed. The downside is the
reduction of the descriptor discriminability.

The computation of inverted-SIFT has a negligible computational cost, as it can be gen-
erated from SIFT descriptors by rearranging the data in the gradient histogram. The only
associated computational cost is in the matching since twice as many features are matched
in the second image. For the half-SIFT method, the feature patch and its descriptor has to be
extracted since the dominant feature orientation differs from SIFT’s dominant orientation.

An example of a multimodal image registration dataset is presented in [3]. This dataset
consist of 100 pairs of vertically aligned images from a camera and a LWIR thermal sensor.
Viewpoint changes between related image pairs are negligible.
Change in object illumination and appearance. Techniques similar to those developed for
multimodal image matching can be used for matching of images of differently illuminated
objects. In [20], the authors employ half-SIFT and further modify SIFT descriptor in such a
way that it collects only gradients located on edges. Yang et al. [43] use the Difference of
Gaussian features and SIFT to estimate the transformation between the images. If no matches
are found, an identity transformation is assumed. From a single local match, multiscale
features together with local image statistics are used in an iterative procedure called Dual-
Bootstrap to enlarge the region of good alignment.

Hauagge et al. [17] argue that local symmetries survive significant illumination changes
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and developed a higher-level feature detector for matching of urban scenes where symmetries
are abundant. They also assume that the vertical direction is aligned with one of the edges
of the image. The method [17] is able to match images of architectural objects taken many
years apart and even to match sketches to photos. Their dataset contains 46 pairs of images.

Matching of images depicting very different appearance of the same object arise in com-
puter vision applications. A system for guided drawing of free-form objects called Shadow-
Draw is presented in [21]. It can be seen as a large-scale image retrieval system which inter-
actively tries to look for images based on sketches given by a user. In the object classification
field, the multiple-appearance problem has been investigated in [36] who train a data-driven
visual similarity measure in order to match images to sketches or paintings. Those two ap-
proaches use global image description rather than local image feature matching.

3 Datasets
Datasets used in experiments are listed in Table 1. When evaluating detectors (Section 5)
and the proposed matching algorithm (Section 4) all dataset images are used. However,
descriptor evaluation is performed only on a subset of the most challenging pairs (i.e. only
pairs 1-6 from OxfordAffine).

Most of the published datasets (with exception of the LostInPast dataset [12]) include
only a single nuisance factor per image pair. This is suitable for evaluation of the robustness
to a particular nuisance factor but fails to predict performance in more complex environ-
ments. One of the motivations of the proposed WxBS datasets is to address this issue.

Table 1: Datasets used for evaluation
Short name Proposed by #images Type
GDB Kelman et al. [20], 2007 22 pairs WLBS, WSBS
SymB Hauagge and Snavely [17], 2012 46 pairs WABS, WLBS
MMS Aguilera et al. [3], 2012 100 pairs WSBS
EVD Mishkin et al. [27], 2013 15 pairs WGBS
OxAff Mikolajczyk et al. [26], [24], 2013 8 sextuplets WGBS
EF Zitnick and Ramnath et al. [45],2011 8 sextuplets WGBS,WLBS
Amos Jacobs et al. [18],2007 > 100K WLBS,WABS
VPRiCE VPRICE Challenge 2015 [38] 3K pairs WGABS, WGLBS,WGSBS,
Past Fernando et al. [12], 2014 502 images WGABS
WxBS here 37 pairs WABS,WGABS,WGLBS, WGSBS,WLABS,WGALBS

WxBS dataset and evaluation protocol. A set of 37 image pairs has been collected from
Flickr and other sources. The dataset is divided into 6 categories based on the combinations
of nuisance factor present, see Table 2. For every image, a set of approximately 20 ground-
truth correspondences has been annotated. Selected examples are presented in Figure 2. The
resolution of the majority of the images is 800× 600 with the exception of LWIR images
from the WGSBS dataset which were captured by a thermal camera with a resolution of
250×250 pixels. The selected image pairs contain both urban and natural scenes.

Table 2: The WxBS datasets categories
Short name Nuisance #images Avg. # GT Corr.
MAP2PH appearance (map to photo) 6 pairs homography provided
WGABS viewpoint, appearance 5 pairs 22 per img.
WGLBS viewpoint, lighting 9 pairs 21 per img.
WGSBS viewpoint, modality 5 pairs 18 per img.
WLABS lighting, appearance 4 pairs 25 per img.
WGALBS viewpoint, appearance, lighting 8 pairs 17 per img.
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a) WGABS (5 pairs) b) WGSBS (5 pairs) c) WLABS (4 pairs)

d) WGLBS (9 pairs) e) WGALBS (8 pairs)

Figure 2: Examples of image pairs from the WXBS dataset.

Ground truth and the evaluation protocol. In the image registration tasks, it is often
sufficient to define ground truth as a homography between an image pair. However, the
WxBS dataset contains significant viewpoint changes. In the case of a non-planar scene a
homography can, at best, cover the dominant plane.

We assume that an ideal algorithm matches the majority of the scene content, thus our
ground truth is a set of manually selected correspondences which evenly cover the part of
the scene visible in both images. The average number of correspondences per image pair is
shown in Table 2.

The evaluation protocol for the WxBS dataset. For each image pair indexed with i ∈ Z
we have manually annotated a set of correspondences (u,v) ∈ Ci where u and v are coor-
dinates of manually picked positions in the 1st and the 2nd image respectively. For epipolar
geometry we use symmetric epipolar distance e(Fi,u,v) and for homography he symmetric
reprojection error e(Hi,u,v)[16]. The choice is based on preliminary experiments where
Sampson error was prone to quasi-degenerate solutions in presence of "one-to-many" corre-
spondences.

The recall on ground truth correspondences Ci of image pair i and for geometry model
Mi is computed as a function of a threshold θ

ri,Mi(θ) =
|{(u,v) : (u,v) ∈Ci,e(Mi,u,v)< θ}|

|Ci|
(1)

using appropriate error functions e(Fi,u,v) or e(Hi,u,v). For all pairs of each category W
we define an overall recall per category as:

rW (θ) =
∑i∈W ri,Mi(θ)

|W |
, (2)

the fraction of the ground truth annotated correspondences which are consistent with the
output of wide baseline stereo algorithm for a given threshold in a nuisance category.
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4 Algorithm for Wide Multiple Baseline Stereo Matching

Algorithm 1 MODS-WXBS – a matcher for
wide multiple baseline stereo
Input: I1, I2 – two images; θm – minimum required num-

ber of matches; Smax – maximum number of iterations.
Output: Fundamental or homography matrix F or H;

a list of corresponding local features.

while (Nmatches < θm) and (Iter < Smax) do
for I1 and I2 separately do

1 Generate synthetic views according to the
scale-tilt-rotation-detector setup for the Iter.
2 Detect local features using adaptive thresh-

old.
3 Extract rotation invariant descriptors with:
3a rSIFT and 3b hrSIFT
4 Reproject local features to I1.

end for
5 Generate tent. corresp. based on the first geom.

inconsistent rule for rSIFT and hrSIFT
separately using kD-tree

6 Filter duplicates
7 Geometric verification of all TC with modified

DEGENSAC [10] estimating F or H.
8 Check geom. consistency of the LAFs

with est. F or H.
end while

This section introduces WxBS-MODS
(WxBS-M), a variant of MODS [27, 28], a
matcher designed for WxBS problems. Its
structure is presented in Algorithm 1. The
basic idea is to repeat the matching steps –
synthesize artificial views of given images,
detect and describe local features, match
and geometrically verify them – until a reli-
able geometrical model is found.

MODS was chosen as the core of
the proposed WxBS algorithms since its
showed state-of-the-art performance on
two-view matching problems with extreme
change in geometry [28].

The differences between MODS and
WxBS-M are: (1) the detection threshold
for all detectors is set adaptively, as de-
tailed below, (2) the use of multiple de-
scriptors – RootSIFT [6] (rSIFT) and Hal-
fRootSIFT [20] (hrSIFT, gradient orienta-
tion ∈ [0;π)), and (3) descriptors from dif-
ferent detectors as well as for different de-
scriptors are placed in separate kD-trees.

Descriptor selection for WxBS-M. We considered the following descriptors for the WxBS-
M matcher: SIFT [22], rSIFT [6], hrSIFT (gradients in interval [0;π)) [20], InvSIFT (SIFT
with reordered histogram bins as for inverted image) [15], LIOP[44], AKAZE [5], MROGH [11],
FREAK [4], ORB [33], SymFeat [17], SSIM [35] (implementation [8]), DAISY [39] and –
as a baseline – L2-normalized raw grayscale pixel intensities.

The evaluation protocol was as follows. The dataset for descriptors evaluation consisted
of 40 image pairs from datasets listed in Table 1 divided into 5 parts according to the nui-
sance factors: geometry, appearance, illumination, sensor, map versus photo (as showed in
Figure 3).

For each reference image of the pair, local affine-covariant features were detected by
Hessian-Affine, MSER and FOCI. Multiple detectors were used in order to minimize the
selection bias towards a specific detector.

The affine-covariant regions were assinged dominant orientation and then reprojected to
the second image by the ground truth homography. All the images are either without signifi-
cant relative depth or taken from virtually identical viewpoints, so homography is the appro-
priate two-view relationship. Regions not visible in the second image were discarded.The
geometric repeatability of such regions is by construction 100% and the maximum possible
recall is 1.

Color-to-grayscale image transformation have been done via channel averaging, which
gives best matching performance [19].Then affine regions were normalized to patch size
41x41 (scale σ = 3

√
3) and described with given descriptors. An affine-normalization pro-

cedure is performed even for the fast binary descriptors, which is rarely used because of the
significant additional processing time. However, the goal of the experiment is to explore
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descriptor performance in challenging conditions, not their speed. The procedure helps –
the typical threshold of the Hamming distance for binary descriptors on unnormalized patch
is around 60-80, while on affine normalized patches similar performance is obtained with a
threshold around 10-30. All descriptors benefit from the affine normalization procedure, e.g.
the graffiti 1-6 pair from the OxAff dataset could be matched with FREAK descriptor only
when using a normalized patch.

Floating point descriptors were compared using L2 distance, binary using Hamming dis-
tance. The Recall-Precision curves are shown in Figure 3. The second-nearest distance ratio
is used to parameterize the curve for floating point descriptors, the Hamming distance for
binary ones.

The results shows that gradient-histogram based SIFT and its variants including DAISY
are the best performing descriptors by a big margin in the presence of any (geometric, illumi-
nation, etc) nuisance factors despite the fact that some of the competitors – LIOP, MROGH –
have been specifically designed to deal with illumination changes. The second best descrip-
tor is, surprisingly, the patch with contrast-L2-normalized pixels beating all other descriptors.
It ha as huge memory footprint – 1681 floats, but the affine-photo-L2-normed grayscale pixel
intensities are a strong descriptor baseline.

Note that most of the descriptors gain significantly from photometric normalization, cf.
the first two columns of Figure 3. The published implementations are clearly sensitive to
contrast variations.

Most of descriptors, despite their different underlying assumptions and algorithmic struc-
ture, successfully match almost the same patches (see third column in Figure 3) – and the
most complementary descriptor to the leading rSIFT is its gradient-reversal-insensitive ver-
sion hrSIFT.

The most difficult nuisance factor for tested descriptors is modality – the best recall
for images acquired in different ways (infrared, visible and map) is 0.06..0.12 – even for the
"ideal" detector. Descriptors are much more robust to geometry and illumination differences,
yet not able to successfully match even half of detected regions.

The results confirming the domination of SIFT-based methods are in agreement with
[37] and [12] despite the fact that they adopted a rather different evaluation methodology.
However, we could not confirm clear superiority of the SSIM over SymFeat descriptors,
which could be explained by the fact that the SSIM descriptor was designed for use only
with the SSIM detector.

Adaptive threshold of the detector response. One of the main problems in matching of day
to night and infrared images is the low number of detected features. The problem is acute
in dark low contrast images in the WGSBS and MMS [3] datasets. A possible approach
addressing the problem is iiDoG [42] where the difference of Gaussians is normalized by
sum of Gaussians. It works well, but cannot be easily applied for other types of detectors,
i.e. MSER.

Instead, we propose to use the following adaptive thresholding for all feature detectors.
First, all local extrema of the response function are detected, i.e. no thresholding takes place.
Next, the detected features are sorted according to the response magnitude. If the number of
detected features with response magnitude ≥ Θ is greater than a given threshold Rmin, these
are output and the algorithm terminates (this is the standard approach). If there is not enough
features above the threshold, take top Rmin features for output.
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Figure 3: First column: descriptors computed using authors’ implementation, second col-
umn - descriptors computed on photometrically normalized patches (mean = 0.5, var = 0.2)
patches as done in SIFT. Third column: top 5 complementary pairs of descriptors (photomet-
rically normalized). Forth column: examples of images with current nuisance factor, rows:
WGBS,WABS,WLBS,WSBS,MAP2PH, ALL. The numbers in legend are mean average pre-
cision. Note that axis scales differs in each row, i.e. for different WxBS problems.
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Table 3: Matching algorithm comparison. The number of matched image pairs (left) and
the average running time (right). The FOCI detector is run through MS Windows simulator
wine, the time includes a big overhead.
Alg. EF EVD MMS WGABS WGALBS WGLBS WGSBS WLABS Past OxAff SymB GDB

#
33

time
[s]

#
15

time
[s]

#
100

time
[s]

#
5

time
[s]

#
8

time
[s]

#
9

time
[s]

#
5

time
[s]

#
4

time
[s]

#
172

time
[s]

#
40

time
[s]

#
46

time
[s]

#
22

time
[s]

Threshold adaptation
MSER 16 1.4 3 1.4 1 0.3 0 2.0 0 1.3 0 1.3 0 0.8 1 1.2 8 1.3 40 3.5 23 2.4 9 2.4
AdMSER 25 3.4 8 4.0 6 1.0 0 4.0 0 3.2 0 3.3 0 1.4 1 2.6 11 2.9 40 5.7 26 4.6 13 6.9
DoG 29 2.3 0 2.8 10 0.8 0 2.7 0 2.3 0 2.1 0 1.0 1 2.4 13 2.0 38 4.8 29 2.7 12 4.7
iiDoG 29 3.1 0 3.0 11 1.2 0 3.2 0 2.9 0 2.8 0 1.2 1 2.5 13 2.2 38 8.0 29 2.9 12 6.1
AdDoG 29 2.6 0 3.4 11 1.2 0 3.3 0 3.0 0 3.0 0 1.5 1 2.7 13 2.7 38 4.1 30 3.0 12 4.8
HesAf 32 4.6 1 5.2 15 1.2 0 5.5 0 3.8 0 4.2 0 2.0 1 3.6 24 4.0 40 11 35 5.8 17 9.1
AdHesAf 33 5.7 2 7.6 35 2.9 0 7.2 1 6.5 0 6.0 0 3.2 1 4.9 25 5.4 40 10 35 7.2 18 13

Other detectors
WαSH 0 1.8 0 5.4 0 0.6 0 2.8 0 2.5 0 1.4 0 1.8 0 1.2 0 1.9 24 4.1 3 2.8 3 6.9
ORB 3 4.1 0 3.6 1 0.8 0 2.8 0 2.7 0 3.6 0 1.6 0 2.8 1 2.3 28 8.7 5 3.0 3 6.1
SURF 27 2.3 0 2.4 7 1.0 0 2.5 0 1.9 0 2.1 0 0.9 1 1.4 10 1.9 38 5.8 31 2.9 15 4.0
AKAZE 28 4.3 0 3.6 10 0.8 1 4.7 0 3.4 0 4.0 0 1.3 1 2.7 25 3.6 38 13 35 5.6 17 6.4
FOCI 29 12 0 39 14 11 1 32 0 29 0 29 0 20 1 29 21 13 38 35 35 27 17 45
SFOP 25 11 0 16 12 4.7 0 12 0 10 0 10 0 9.2 0 7.5 11 12 36 15 24 11 8 17
WADE 16 14 0 20 0 3.4 0 58 0 11 0 14 0 7.9 1 8.3 20 23z 34 60 34 46 13 77

State-of-art matchers
ASIFT 23 27 5 12 18 3.2 0 52 0 32 0 35 0 12 1 30 62 32 40 102 27 14 15 41
MODS 33 4.8 15 11 27 11 2 41 2 31 1 46 0 17 1 26 94 27 40 3.4 42 18 18 11
DBstrap 31 26 0 18 79 9.3 0 11 0 13 0 13 0 4.7 0 15 16 28 36 24 38 21 16 17

Proposed matcher
WXBS-M 33 4.7 15 14 82 12 3 40 3 63 3 61 0 26 3 28 107 42 40 5.1 43 18 22 12

5 Experiments

The performance of the proposed WxBS-M matcher was compared with the state-of-art
matchers: ASIFT [30], Dual Bootstrap (DBstrap) [43], and MODS [28] and with a number of
algorithms that use only a single feature: MSER [23], DoG [22], Hessian-Affine [25] (imple-
mentation [31]), FOCI [45], IIDOG [42], WADE [34], WαSH [41], SURF [7], SFOP [13],
AKAZE[5]. For single features algorithms, matching is done as in Algorithm 1 except that
no view synthesis is performed; both rSIFT and hrSIFT descriptors are used.

We focus on getting a reliable answer to the "match/non-match" question for challenging
image pairs. Therefore performance is measured by the number of successfully matched
pairs. Image pairs are considered matched if ≥15 correct inliers to a homography are found.
Since the Lost-in-the-Past dataset contains 2300 matchable image pairs, which is unfeasible
for all-pairs matching, we selected a subset of 172 medium-difficulty image pairs. Other
datasets (see Table 1) are used fully.

The results are summarized in Table 3. The classical datasets (OxAff, EF, etc.) consider
only geometrical or illumination differences and are no more challenging. The sensor IR
vs. visible change (MMS) is the most challenging nuisance factor. Even if it is the only one
present, most matchers success rates are below 10%, with the exception of AdHesAf (35%),
DBstrap (79%) and WxBS-M (82%).

The state-of-the-art matchers were able to match almost no image pairs with more nui-
sance factors. The proposed WXBS-M shows much better performance, but still is unable
to solve more than half of the new WxBS dataset pairs.

Results in Table 3 confirm that the proposed adaptive thresholding strategy works as well
as, or even better, than iiDoG for DoG, but it is 1.5 times faster (versions of detectors with
adaptive thresholding are denoted with "Ad" prefix). It also significantly improves results
of the MSER and Hessian-Affine, even when the most prominent nuisance is the viewing
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geometry (on the EVD dataset).
Comparing single detectors, (adaptive) Hessian-Affine still shows best performance among

more recent detectors.

6 Conclusions
We have presented a new vision problem – the wide multiple baseline stereo (WXBS) –
which considers matching of images that simultaneously differ in more than one image ac-
quisition factor such as viewpoint, illumination, sensor type or where object appearance
changes significantly, e.g. over time. A new dataset with the ground truth for evaluation of
matching algorithms has been introduced and made public.

We have extensively tested a large set of popular and recent detectors and descriptors
and show than the combination of RootSIFT and HalfRootSIFT as descriptors with MSER
and Hessian-Affine detectors works best for many different nuisance factors. We show that
simple adaptive thresholding improves Hessian-Affine, DoG, MSER (and possibly other)
detectors and allows to use them on infrared and low contrast images.

A novel matching algorithm for addressing the WxBS problem has been introduced.
We have shown experimentally that the WXBS-M matcher dominates the state-of-the-art
methods both on both the new and existing datasets.
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