
WxBS: Wide Baseline Stereo Generalizations

Dmvtro Mishkin¹ ducha.aiki@gmail.com Jiri Matas¹ matas@cmp.felk.cvut.cz Michal Perdoch² perdoch@vision.ee.ethz.ch Karel Lenc³ karel@robots.ox.ac.uk

- ¹ Center for Machine Perception Czech Technical University in Prague Czech Republic
- ²Computer Vision Laboratory, ETH Zurich, Switzerland
- ³ Visual Geometry Group Department of Engineering Science University of Oxford, Oxford, UK

a) WGABS (5 pairs)

b) WGSBS (5 pairs)

d) WGLBS (9 pairs)

e) WGALBS (8 pairs)

Figure 1: Examples of image pairs from the WXBS dataset

We consider the generalization of Wide (geometric) Baseline Stereo to WxBS, a two-view image matching problem where two or more of the image formation and acquisition properties significantly change, i.e. they have a wide baseline.

The following single wide baseline stereo problems and their combinations are considered: illumination (WLBS) - difference in position, direction, number, intensity and wavelength of light sources; geometry (WGBS) - difference in camera and object pose, scale and resolution - the "classical" WBS; sensor (WSBS) - change in sensor type: visible, IR, MR; noise, image preprocessing algorithms inside the camera, etc; appearance (WABS) - difference in the object appearance because of time or seasonal changes, occlusions, turbulent air, etc.

We present a new public dataset (see Figure 1) with ground truth which combines the above-mentioned challenges and contains both W2BS image pairs including viewpoint and appearance, viewpoint and illumination, viewpoint and sensor, illumination and appearance change and W3BS - problems where viewpoint, appearance and lighting differ significantly.

We propose a novel algorithm for two-view matching in challenging conditions - WxBS-MODS (Algorithm 1). It significantly outperforms the state-of-the-art matchers: ASIFT [2], Dual Bootstrap (DBstrap) [3] and MODS [1] on various WxBS problems without a significant loss of speed (Table 1).

Algorithm 1 MODS-WXBS –

a matcher for wide multiple baseline stereo

- **Input:** I_1 , I_2 two images; θ_m minimum required number of matches; S_{max} maximum number of iterations. Output: Fundamental or homography matrix F or H;
- a list of corresponding local features.
- while $(N_{\text{matches}} < \theta_m)$ and $(\text{Iter} < S_{\text{max}})$ do
 - for I_1 and I_2 separately do

1 Generate synthetic views acc. to the scale-tilt-rotation-detector setup

- for Iter. **2 Detect local features** using adaptive threshold.
 - 3 Extract rotation invariant descriptors with: 3a rSIFT and 3b hrSIFT 4 Reproject local features to I₁.

end for 5 Generate tent. corresp. based on the first geom.inconsistent rule for rSIFT and hrSIFT separately using kD-tree 6 Filter duplicates

- 7 Geometric verification of all TC with modified DEGENSAC estimating
- or *H*. **8 Check geom. consistency** of the LAFs with est. *F* or *H*. end while
- [1] Dmytro Mishkin, Michal Perdoch, and Jiri Matas. Mods: Fast and robust method for two-view matching. CoRR, abs/1503.02619, 2015.
- [2] Jean-Michel Morel and Guoshen Yu. Asift: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2(2):438-469, 2009.
- Gehua Yang, Charles V Stewart, Michal Sofka, and Chia-Ling Tsai. Registration of chal-[3] lenging image pairs: Initialization, estimation, and decision. PAMI 2007, 29(11):1973-1989, 2007.

Table 1: Comparison of MODS-WxBS, ASIFT and Dual Bootstrap on public datasets. The number of matched image nairs (left) and the average running time (right)

ne number of matched image pairs (left) and the average running time (right).																										
ſ	Alg. / Dataset		EF	E	EVD		MMS		WGABS		WGALBS		WGLBS		WGSBS		WLABS		Past		OxAff		SymB		GDB	
		#	time	#	time	#	time	#	time	#	time	#	time	#	time	#	time	#	time	#	time	#	time	#	time	
		33	[<i>s</i>]	15	[<i>s</i>]	100	[<i>s</i>]	5	[<i>s</i>]	8	[<i>S</i>]	9	[<i>s</i>]	5	[<i>s</i>]	4	[<i>s</i>]	172	[<i>s</i>]	40	[<i>s</i>]	46	[<i>s</i>]	22	[<i>s</i>]	
	State-of-art matchers																									
	ASIFT	23	27	5	12	18	3.2	0	52	0	32	0	35	0	12	1	30	62	32	40	102	27	14	15	41	
	MODS	33	4.8	15	11	27	11	2	41	2	31	1	46	0	17	1	26	94	27	40	3.4	42	18	18	11	
	DBstrap	31	26	0	18	79	9.3	0	11	0	13	0	13	0	4.7	0	15	16	28	36	24	38	21	16	17	
											Propose	d n	natcher													
	WXBS-M	33	4.7	15	14	82	12	3	40	3	63	3	61	0	26	3	28	107	42	40	5.1	43	18	22	12	