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Semi-supervised clustering of images has been an interesting problem
for machine learning and computer vision researchers for decades. Pair-
wise constrained clustering is a popular paradigm for semi supervision
that uses knowledge about whether two images belong to the same cate-
gory (must-link constraint) or not (can’t-link constraint). Performance of
constrained clustering algorithms can be improved if the supervision on
some image pairs is used to modify the pairwise distances of other image
pairs, for which no supervision is available. There are several excellent
metric learning approaches when the image distances can be represented
as Euclidean distances in vector spaces [6]. However, in many cases dis-
tances are computed robustly [3], on manifolds [4] or as the output of
algorithms [1] or classifiers. These do not lead to a natural embedding
in a metric space, and may not even obey the triangle inequality. We
are particularly interested in semi-supervised clustering of fine-grained
categories. If we look at the top 10 distance measures in two important
domains (LFW faces and leaf shapes) related to fine-grained classifica-
tion, we find that 80% of the methods use non-vector space distances.
These distances can be used for clustering images, but are not suitable for
existing metric learning algorithms.

In order to propagate constraints from supervised to unsupervised
pairs, some structure must be assumed on the set of possible distances.
Otherwise, the distance between supervised pairs could be altered with-
out affecting the distance between unsupervised pairs. Perhaps the weak-
est assumption that we can make about a distance is that it obeys the
triangle inequality. Enforcing the triangle inequality allows us to propa-
gate constraints; if a constraint alters one distance, other distances must
also change to maintain triangle inequalities. For many interesting dis-
tances, the triangle inequality is not guaranteed to hold. However, we
empirically find that the triangle inequality almost always holds for dis-
tances computed for fine-grained classification even when not explicitly
enforced. This strongly motivates us to enforce the triangle inequalities
when we alter distances to incorporate the pairwise constraints. We then
find empirically that by enforcing the triangle inequality we can improve
performance on several real world datasets.

Our main contribution is to formulate distance learning with pairwise
constraints as a metric nearness problem1 [2] and then provide an efficient
algorithm to solve metric nearness for clustering. First, we formulate
a quadratic optimization problem, where the pairwise distances between
images are modified such that pairwise constraints and triangle inequality
constraints are satisfied as much as possible. Since enforcing O(N3) trian-
gle inequalities is computationally expensive, we propose a graph based
approach, where only O(n(M +C)) triangle inequalities are sampled for
use in the QP (N is the total number of images, n is the number of nearest
neighbors in the n-nearest neighbor graph, M and C are the number of
must-link and can’t-link constraints respectively). We empirically show
that this sampling approach works well in practice. We use the distances
obtained by our approach along with a constrained clustering algorithm
[5] to achieve state-of-the-art clustering results.

We theoretically analyze a simplified case in which only one pairwise
constraint is present, to gain insights into our fast approach. Our sam-
pling approach is based on the intuition that clustering is predominately
affected by small distances, and is not sensitive to the exact value of larger
distances. We prove that our sampling approach produces the same set of
small distances that would be obtained by enforcing all constraints. We
perform experiments on leaf and face image/video datasets and show that
distances obtained by our method achieve state-of-the-art clustering re-
sults.

Formulation: We begin with a set of N unlabeled images U (xxx ∈ U)
from K classes. We are also provided with initial distances between all

1Given a dissimilarity matrix, find the “nearest” matrix of distances that satisfy the triangle
inequalities.

the image pairs, i.e., dI(xxxi,xxx j) is given ∀i, j (note that dI denotes initial
distance). However we do not have any vector representation of the im-
ages. We have access to a set of must-link and can’t-link constraints. Let
M denote the set of must-link constraints such that any pair (xxxi,xxx j) ∈M
implies that xxxi and xxx j belong to the same class. Similarly C denotes the
set of can’t-link constraints such that any pair (xxxi,xxx j) ∈ C implies that xxxi
and xxx j belong to different classes.

We learn a new set of distances for all the image pairs given the pair-
wise constraints M and C. A quadratic optimization problem is formu-
lated to find these distances. Let us assume that the set of final distances
are given by dF (xxxi,xxx j), which we can obtain by solving the following
quadratic optimization problem:

minimize
dF

∑
(xxxi,xxx j)/∈M∪C

(dF (xxxi,xxx j)−dI(xxxi,xxx j))
2

subject to (i) dF (xxxi,xxx j)≤U, (xxxi,xxx j) ∈M
(ii) dF (xxxi,xxx j)≥ L, (xxxi,xxx j) ∈ C
(iii) dF (xxxi,xxx j)+dF (xxx j,xxxk)≥ dF (xxxi,xxxk),∀i, j,k

(iv) dF (xxxi,xxx j)≥ 0,∀i, j

(1)

In the formulation in Eq. 1, distances between all image pairs are
modified such that the constraints (i) to (iv) are satisfied. The objective
function minimizes the total sum of changes in pairwise distances. Con-
straint (i) causes distances corresponding to must-link constraints to be
reduced so they are upper-bounded by U , a user defined constant. Sim-
ilarly, constraints in (ii) move can’t-link image pairs as far as possible.
The triangle inequality constraints are added in (iii). These triangle in-
equality constraints propagate information about must-link and can’t-link
constraints to other image pairs. The final set of constraints in (iv) ensure
that all the quadratic optimization variables, i.e., the pairwise distances,
remain non-negative.

In this QP formulation, there are large number of QP variables (O(N2))
and triangle inequality constraints (O(N3)). Also with all the pairwise and
triangle inequality constraints there may not exist a feasible solution. To
avoid these issues we reduce the size of the QP significantly by deter-
mining which triangle inequalities are crucial for clustering using a novel
graph-based formulation (please see the paper for further details).
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