
Deep Perceptual Mapping for Thermal to Visible Face Recognition

M. Saquib Sarfraz
https://cvhci.anthropomatik.kit.edu/~ssarfraz

Rainer Stiefelhagen
http://cvhci.anthropomatik.kit.edu

Institute of Anthropomatics & Robotics
Karlsruhe institute of Technology
Karlsruhe, Germany.

Figure 1: Deep Perceptual Mapping (DPM): densely computed features from the visible domain are mapped through the learned DPM network to the
corresponding thermal domain.

Cross modal face matching between the thermal and visible spectrum is a
much desired capability for night-time surveillance and security applica-
tions. Due to a very large modality gap, thermal-to-visible face recogni-
tion is one of the most challenging face matching problem. In this paper,
we present an approach to bridge this modality gap by a significant mar-
gin. Our approach captures the highly non-linear relationship between
the two modalities by using a deep neural network. Our model attempts
to learn a non-linear mapping from visible to thermal spectrum while pre-
serving the identity information. We show substantive performance im-
provement on a difficult thermal-visible face dataset (UND-X1). The pre-
sented approach improves the state-of-the-art by more than 10% in terms
of Rank-1 identification and bridge the drop in performance due to the
modality gap by more than 40%.

The goal of training the deep network is to learn the projections that
can be used to bring the two modalities together. Typically, this would
mean regressing the representation from one modality towards the other.

We construct a deep network comprising N +1 layers with m(k) units
in the k-th layer, where k = 1,2, · · · ,N. For an input of x ∈Rd , each layer
will output a non-linear projection by using the learned projection matrix
W and the non-linear activation function g(·). The output of the k-th hid-
den layer is h(k) = g(W(k)h(k−1) + b(k)), where W(k) ∈ Rm(k)×m(k−1) is
the projection matrix to be learned in that layer, b(k) ∈Rm(k)

is a bias vec-
tor and g : Rm(k) 7→ Rm(k)

is the non-linear activation function. Similarly,
the output of the most top level hidden layer can be computed as:

H(x) = h(N) = g(W(N)h(N−1)+b(N)) (1)

where the mapping H : Rd 7→ Rm(N)
is a parametric non-linear perceptual

mapping function learned by the parameters W and b over all the network
layers. To determine the parameters W and b for such a mapping, our ob-
jective function must seek to minimize the perceptual difference between
the visible and thermal training examples in the least mean square sense.
We, therefore, formulate the DPM learning as the following optimization
problem.
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The first term in the objective function corresponds to the simple
squared loss between the network output x̄ given the visible domain input
and the corresponding training example t from the thermal domain. The
second term in the objective is the regularization term with λ as the reg-
ularization parameter. ‖W‖F is the Frobenius norm of the projection ma-
trix W. Given a training set X = {x1,x2, · · · ,xM} and T = {t1, t2, · · · , tM}
from visible and thermal domains respectively, the objective of training is
to minimize the function in equation 2 with respect to the parameters W
and b.

The network is trained on densely computed feature representations
(SIFT vectors) from overlapping small regions in the images. This proves

Effect of Modality gap: Performance with 1 Gallery image/subject

Thermal-Thermal Thermal-Visible Thermal-Visible (via DPM) Modality-gap bridged
89.47 30.36 55.36 ∼ 42%

Table 1: Performance drop due to Modality gap: Rank-1 identification
using 1 image/subject as gallery in Thermal-Thermal and Thermal-Visible
matching using baseline features.

effective, as the model is able to capture the differing local region’s per-
ceptual differences well. The training set comprises of these vectors com-
ing from the corresponding patches from the images of the same iden-
tity. Using the corresponding images of the same identity ensures that the
model will learn the only present differences due to the modality. Figure
1 capsulizes this process.

After obtaining the mapping from visible to thermal domain, we can
now pose the matching problem as that of comparing the thermal images
with that of mapped visible data. The presented set-up is ideal for the
surveillance scenario as the gallery images can be processed and stored
offline while at test time no transformation and overhead is necessary.
We use a simple matrix vector multiplication to compute the similarity
enabling us to match the probes in real-time.

We report evaluations using typical identification and verification set-
tings. As baseline we use the same concatenated SIFT features but with-
out the DPM mapping. This enables us to directly compare and see the
effectiveness of the proposed model. Our results show (see paper) that we
improve the state-of-the-art best published results by more than 10% in
all cases.
Effect of modality gap: We also present the experiment to measure the
effect of modality gap. Keeping everything fixed i.e. using the same
baseline features and settings, we compute the rank-1 identification score
within the same modality. As shown in Table 1, we obtain 89.7% rank-
1 score in the Thermal-Thermal identification scenario and 30.3% in the
corresponding Thermal-visible scenario (using the same baseline features).
This amounts to the performance drop, purely due to modality change, of
about 59%. This reflects the challenging nature of the problem and the
existing research gap to tackle this. As shown, with DPM on the same
features, the performance is improved by 25%. This amounts to bridging
the existing modality gap of 59% by more than 40%.
Computational Time: Training the DPM on 12 cores 3.2-GHz CPU
takes between 1− 1.5 hours on MATLAB. Preprocessing, features ex-
traction and mapping using DPM only takes 45ms for one image. This
is even less in the testing case since no mapping is required for thermal
images. It is, therefore, very fast and capable of running in real-time at
∼ 28 fps.

Conclusively, the presented DPM approach is very effective, easy
to train, real-time capable and provides a practical solution for a large
surveillance and military application industry.


