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Introduction. A fundamental challenge in intelligent video surveillance
is to automatically detect abnormal events in long video streams. This
problem has attracted considerable attentions in recent years. In this paper
we propose a novel Appearance and Motion DeepNet (AMDN) frame-
work for discovering anomalous activities in complex video surveillance
scenes. Opposite to previous works [1, 2], instead of using hand-crafted
features to model activity patterns, we propose to learn discriminative
feature representations of both appearance and motion patterns in a fully
unsupervised manner. A novel approach based on stacked denoising au-
toencoders (SDAE) [3] is introduced to achieve this goal.
Contributions. i) As far as we know, we are the first to introduce an un-
supervised deep learning framework to automatically construct discrimi-
native representations for video anomaly detection. ii) We propose a new
approach to learn appearance and motion features as well as their corre-
lations. Deep learning methods for combining multiple modalities have
been investigated in previous works. However, to our knowledge, this is
the first work where multimodal deep learning is applied to anomalous
event detection. iii) A double fusion scheme is proposed to combine ap-
pearance and motion features for discovering unusual activities. iv) Our
method is validated on challenging anomaly detection datasets and we
obtain very competitive performance compared with the state-of-the-art.
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Figure 1: Overview of the proposed AMDN method for anomalous
event detection. The proposed AMDN structure consists of three SDAE
pipelines corresponding to different types of low-level inputs.

AMDN for Abnormal Event Detection. An overview of the proposed
AMDN is shown in Fig. 1. Low-level visual information including still
image patches and dynamic motion fields represented with optical flow is
used as input of two separate networks, to first learn appearance and mo-
tion features, respectively. To further investigate the correlations between
appearance and motion, early fusion is performed by combining image
pixels with their corresponding optical flow to learn a joint representa-
tion. Finally, for abnormal event prediction, a late fusion strategy is in-
troduced to combine the anomaly scores predicted by multiple one-class
SVM classifiers, each corresponding to one of the three learned feature
representations.

To learn the feature representations, we use three SDAE pipelines
corresponding to different types of low-level inputs. The three SDAE
networks learn appearance and motion features as well as a joint repre-
sentation of them. We show the basic structures of the proposed SDAE
networks in Fig. 2 (a) and (b). Each SDAE consists of two parts: encoder
and decoder. For the encoder part, we use an over-complete set of filters in
the first layer to capture a representative information from the data. Then,
the number of neurons is reduced by half in the next layer until reaching
the “bottleneck” hidden layer. The decoder part has a symmetric structure
with respect to the encoder part.

We train the AMDN with two steps: pretraining and fine-tuning. The
layer-wise pretraining learns one single denoising auto-encoder at a time
with sparsity constraints. The input is corrupted to learn the mapping
function, which is then used to produce the representation for the next
layer with uncorrupted inputs. By using a greedy layer-wise pretraining,
the denoising autoencoders can be stacked to build a multi-layer feedfor-
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Figure 2: The structure of (a) the appearance and motion, and (b) the joint
representation learning pipelines.

ward deep neural network, i.e. a stacked denoising autoencoder. Then
fine-tuning is used to adjust parameters over the whole network.

We formulate the video anomaly detection problem as a patch-based
binary categorization problem, i.e. given a test frame we obtain MI ×NI
patches via sliding window with a stride d and classify each patch as
corresponding to a normal or abnormal region. Specifically, given each
test patch t we compute three anomaly scores Ak(sk

t ), k ∈ {A,M,J}, using
one-class SVM models and the features representations sk

t computed with
the SDAEs. The three scores are then linearly combined to obtain the final
anomaly score A(sk

t ) = ∑k∈{A,M,J}αkAk(sk
t ) (k ∈ {A,M,J} corresponds

to appearance, motion and joint representation, respectively). The weight
vector αk is automatically learned via an unsupervised late fusion scheme.
Then for each patch t, we identify if it corresponds to an abnormal activity
by computing the associated anomaly score A(sk

t ) and comparing it with

a threshold η , i.e. A(sk
t )

normal
≶

abnormal
η .
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(a) Frame-level ROC curve of PED1 Dataset
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(b) Pixel-level ROC curve of PED1 Dataset

Figure 3: UCSD dataset (Ped1 sequence): comparison of frame-level and
pixel-level anomaly detection results with state of the art methods.

Results. Two publicly available datasets, the UCSD (Ped1 and Ped2)
dataset and the Train dataset are used to evaluate the performance of the
proposed approach. Fig. 3 (a) and (b) show the frame-level and pixel-
level detection results on Ped1. The ROC curve is produced by varying
the threshold parameter η . It is evident that our method outperforms most
previous methods and that its performance are very competitive with the
best two baselines. The proposed method is also evaluated on the Train
dataset showing promising results (see the main paper).
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