Sketch-a-Net that Beats Humans

Qian Yu* q.yu@qmul.ac.uk Yongxin Yang* yongxin.yang@qmul.ac.uk Yi-Zhe Song yizhe.song@qmul.ac.uk Tao Xiang t.xiang@qmul.ac.uk Timothy M. Hospedales t.hospedales@qmul.ac.uk

Sketches are very intuitive to humans and have long been used as an effective communicative tool. With the proliferation of touchscreens, sketching has become a much easier undertaking for many – we can sketch on phones, tablets and even watches. However, recognising free-hand sketches (e.g. asking a person to draw a car without any instance of car as reference) is an extremely challenging task. This is due to a number of reasons: (i) sketches are highly iconic and abstract, e.g., human figures can be depicted as stickmen; (ii) due to the free-hand nature, the same object can be drawn with hugely varied levels of detail/abstraction, e.g., a human figure sketch can be either a stickman or a portrait with fine details depending on the drawer; (iii) sketches lack visual cues, i.e., they consist of black and white lines instead of coloured pixels. A recent large-scale study on 20,000 free-hand sketches across 250 categories of daily objects puts human sketch recognition accuracy at 73.1% [2], suggesting that the task is challenging even for humans.

Prior work on sketch recognition generally follows the conventional image classification paradigm, that is, extracting hand-crafted features from sketch images followed by feeding them to a classifier. Most hand-crafted features traditionally used for photos (such as HOG, SIFT and shape context) have been employed, which are often coupled with Bag-of-Words (BoW) to yield a final feature representations that can then be classified. However, existing hand-crafted features designed for photos do not account for the unique abstract and sparse nature of sketches. Furthermore, they ignore a key unique characteristics of sketches, that is, a sketch is essentially an ordered list of strokes; they are thus sequential in nature (See Fig 1). In contrast with photos that consist of pixels sampled all at once, a sketch is the result of an online drawing process. It had long been recognised in psychology that such sequential ordering is a strong cue in human sketch recognition, a phenomenon that is also confirmed by recent studies in the computer vision literature [7]. However, none of the

Index	Layer	Туре	Filter Size	Filter Num	Stride	Pad	Output Size
0		Input	-	-	-	-	225×225
1	L1	Conv	15×15	64	3	0	71×71
2		ReLU	-	-	-	-	71×71
3		Maxpool	3×3	-	2	0	35 imes 35
4	L2	Conv	5×5	128	1	0	31×31
5		ReLU	-	-	-	-	31×31
6		Maxpool	3×3	-	2	0	15 imes 15
7	L3	Conv	3×3	256	1	1	15×15
8		ReLU	-	-	-	-	15 imes 15
9	L4	Conv	3×3	256	1	1	15 imes 15
10		ReLU	-	-	-	-	15 imes 15
11	L5	Conv	3×3	256	1	1	15 imes 15
12		ReLU	-	-	-	-	15 imes 15
13		Maxpool	3×3	-	2	0	7×7
14	L6	Conv(=FC)	7×7	512	1	0	1×1
15		ReLU	-	-	-	-	1×1
16		Dropout (0.50)	-	-	-	-	1×1
17	L7	Conv(=FC)	1×1	512	1	0	1×1
18		ReLU	-	-	-	-	1×1
19		Dropout (0.50)	-	-	-	-	1×1
20	L8	Conv(=FC)	1×1	250	1	0	1×1

Table 1: The architecture of Sketch-a-Net.

HOG-SVM [2]	Ensemble [5]	MKL-SVM [6]	FV-SP [7]	
56%	61.5%	65.8%	68.9	
AlexNet-SVM [3]	AlexNet-Sketch [3]	LeNet [4]	Sketch-a-Net	Human [2]
67.1%	68.6%	55.2%	74.9%	73.1%

Table 2: Comparison with state of the art results on sketch recognition

School of Electronic Engineering and Computer Science Queen Mary, University of London London, E1 4NS United Kingdom

Figure 1: Illustration of stroke ordering in sketching with the Alarm Clock category. Each sketch is split into three parts according to stroke ordering.

Figure 2: Illustration of our overall framework.

existing approaches attempted to embed sequential ordering of strokes in the recognition pipeline even though that information is readily available.

In this paper, we propose a novel deep neural network (DNN), Sketcha-Net (See Fig 2), for free-hand sketch recognition, which is specifically designed to accommodate the unique characteristics of sketches including multiple levels of abstraction and being sequential in nature. Our contributions are summarised as follows: (i) for the first time, a representation learning model based on DNN is presented for sketch recognition in place of the conventional hand-crafted feature based sketch representations (Details are listed in Table 1); (ii) we demonstrate how sequential ordering information in sketches can be embedded into the DNN architecture and in turn improve sketch recognition performance; (iii) we propose a multi-scale network ensemble that fuses networks learned at different scales together via joint Bayesian fusion [1] to address the variability of levels of abstraction in sketches. Extensive experiments on the largest hand-free sketch benchmark dataset, the TU-Berlin sketch dataset [2], show that our model significantly outperforms existing approaches and can even beat humans by 1.8% at sketch recognition (See Table 2).

- D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun. Bayesian face revisited: A joint formulation. In *ECCV*, 2012.
- [2] M. Eitz, J. Hays, and M. Alexa. How do humans sketch objects? In SIGGRAPH, 2012.
- [3] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In *NIPS*, 2012.
- [4] Y. LeCun, L. Bottou, G. B. Orr, and K. Müller. Efficient backprop. *Neural networks: Tricks of the trade*, pages 9–48, 2012.
- [5] Y. Li, Y. Song, and S. Gong. Sketch recognition by ensemble matching of structured features. In *BMVC*, 2013.
- [6] Y. Li, T. M. Hospedales, Y. Song, and S. Gong. Free-hand sketch recognition by multi-kernel feature learning. *CVIU*, 2015.
- [7] R. G. Schneider and T. Tuytelaars. Sketch classification and classification-driven analysis using fisher vectors. In SIGGRAPH Asia, 2014.