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Sketches are very intuitive to humans and have long been used as an effec-
tive communicative tool. With the proliferation of touchscreens, sketch-
ing has become a much easier undertaking for many – we can sketch
on phones, tablets and even watches. However, recognising free-hand
sketches (e.g. asking a person to draw a car without any instance of car
as reference) is an extremely challenging task. This is due to a number
of reasons: (i) sketches are highly iconic and abstract, e.g., human figures
can be depicted as stickmen; (ii) due to the free-hand nature, the same
object can be drawn with hugely varied levels of detail/abstraction, e.g., a
human figure sketch can be either a stickman or a portrait with fine details
depending on the drawer; (iii) sketches lack visual cues, i.e., they consist
of black and white lines instead of coloured pixels. A recent large-scale
study on 20,000 free-hand sketches across 250 categories of daily objects
puts human sketch recognition accuracy at 73.1% [2], suggesting that the
task is challenging even for humans.

Prior work on sketch recognition generally follows the conventional
image classification paradigm, that is, extracting hand-crafted features
from sketch images followed by feeding them to a classifier. Most hand-
crafted features traditionally used for photos (such as HOG, SIFT and
shape context) have been employed, which are often coupled with Bag-
of-Words (BoW) to yield a final feature representations that can then be
classified. However, existing hand-crafted features designed for photos
do not account for the unique abstract and sparse nature of sketches. Fur-
thermore, they ignore a key unique characteristics of sketches, that is, a
sketch is essentially an ordered list of strokes; they are thus sequential in
nature (See Fig 1). In contrast with photos that consist of pixels sampled
all at once, a sketch is the result of an online drawing process. It had long
been recognised in psychology that such sequential ordering is a strong
cue in human sketch recognition, a phenomenon that is also confirmed by
recent studies in the computer vision literature [7]. However, none of the

Index Layer Type Filter Size Filter Num Stride Pad Output Size
0 Input - - - - 225×225
1 L1 Conv 15×15 64 3 0 71×71
2 ReLU - - - - 71×71
3 Maxpool 3×3 - 2 0 35×35
4 L2 Conv 5×5 128 1 0 31×31
5 ReLU - - - - 31×31
6 Maxpool 3×3 - 2 0 15×15
7 L3 Conv 3×3 256 1 1 15×15
8 ReLU - - - - 15×15
9 L4 Conv 3×3 256 1 1 15×15
10 ReLU - - - - 15×15
11 L5 Conv 3×3 256 1 1 15×15
12 ReLU - - - - 15×15
13 Maxpool 3×3 - 2 0 7×7
14 L6 Conv(=FC) 7×7 512 1 0 1×1
15 ReLU - - - - 1×1
16 Dropout (0.50) - - - - 1×1
17 L7 Conv(=FC) 1×1 512 1 0 1×1
18 ReLU - - - - 1×1
19 Dropout (0.50) - - - - 1×1
20 L8 Conv(=FC) 1×1 250 1 0 1×1

Table 1: The architecture of Sketch-a-Net.

HOG-SVM [2] Ensemble [5] MKL-SVM [6] FV-SP [7]
56% 61.5% 65.8% 68.9

AlexNet-SVM [3] AlexNet-Sketch [3] LeNet [4] Sketch-a-Net Human [2]
67.1% 68.6% 55.2% 74.9% 73.1%

Table 2: Comparison with state of the art results on sketch recognition
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Figure 1: Illustration of stroke ordering in sketching with the Alarm Clock
category. Each sketch is split into three parts according to stroke ordering.
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Figure 2: Illustration of our overall framework.

existing approaches attempted to embed sequential ordering of strokes
in the recognition pipeline even though that information is readily avail-
able.

In this paper, we propose a novel deep neural network (DNN), Sketch-
a-Net (See Fig 2), for free-hand sketch recognition, which is specifically
designed to accommodate the unique characteristics of sketches includ-
ing multiple levels of abstraction and being sequential in nature. Our
contributions are summarised as follows: (i) for the first time, a represen-
tation learning model based on DNN is presented for sketch recognition
in place of the conventional hand-crafted feature based sketch represen-
tations (Details are listed in Table 1); (ii) we demonstrate how sequential
ordering information in sketches can be embedded into the DNN architec-
ture and in turn improve sketch recognition performance; (iii) we propose
a multi-scale network ensemble that fuses networks learned at different
scales together via joint Bayesian fusion [1] to address the variability of
levels of abstraction in sketches. Extensive experiments on the largest
hand-free sketch benchmark dataset, the TU-Berlin sketch dataset [2],
show that our model significantly outperforms existing approaches and
can even beat humans by 1.8% at sketch recognition (See Table 2).
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