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Multi-target tracking problems are traditionally tackled in two different
ways. One way is to first group detections into candidate tracklets and
then perform scoring and association of these tracklets [5, 6], this can be
done in either an online/streaming fashion or an offline/batch fashion and
it allows tracklets to be scored with richer trajectory and appearance mod-
els. Another approach is to attempt to include higher-order constraints
directly in a combinatorial framework [1, 2]. In either case, there are a
large number of parameters associated with these richer models which be-
come increasingly difficult to set by hand and necessitate the application
of machine learning techniques.

In this paper, we describe an end-to-end framework for learning pa-
rameters of min-cost flow multi-target tracking problem with quadratic
trajectory interactions including suppression of overlapping tracks and
contextual cues about co-occurrence of different objects. Our approach
utilizes structured prediction with a tracking-specific loss function to learn
the complete set of model parameters. Under our learning framework, we
evaluate two different approaches to finding an optimal set of tracks under
quadratic model objective based on an LP relaxation and a novel greedy
extension to dynamic programming that handles pairwise interactions.

In a min-cost flow multi-target tracking problem, the set of optimal
(most probable) tracks can be found by solving an integer linear program
(ILP) over flow variables f.
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where E is the set of valid transitions between sites in successive frames.
The costs ci represent the negative log-likelihood ratio of an object ap-
pearing at a particular spatio-temporal location i based on image evidence,
ci j represents the cost of a transition between a location i in one frame and
j in a subsequent frame and cs and ct are associated with the birth or death
of a track. The flow conservation constraint (2) enforces that a detection
at site i can only be active as part of a single contiguous track passing
through that location.

It is also possible to capture interactions between multiple tracks by
adding a pairwise cost term denoted qi j for jointly activating a pair of
flows fi and f j corresponding to detections at sites i and j. Adding this
term to 1 yields an Integer Quadratic Program (IQP):
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In our experiments, we investigate pairwise contextual interactions be-
tween pairs of sites in the same video frame which we denote by EC. The
addition of quadratic terms makes the objective (4) NP-hard. We thus
propose a novel greedy approximation based on repeated passes of dy-
namic programming and compare it with a standard LP relaxation-based
approach.

We formulate parameter learning of tracking models as a structured
prediction problem. Assume we have N training videos with detector out-
puts and corresponding ground-truth track associations specified by flow
variables {(Xn, fn)}. We can parameterize the network flow costs c as a
linear function of image and detection features where the parameters are
specified by weight vector w. We propose to discriminatively learn track-
ing model parameters w using a structured SVM with margin rescaling:
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Figure 1: By learning a proper set of parameters, even a basic network-
flow model without pairwise potentials can successfully prune away
many false tracks by reasoning about detection confidence and transition
smoothness.

where Ψ(Xn, fn) are the features extracted from nth training video. L(fn, f̂)
is a loss function that penalizes any difference between the inferred label
f̂ and the ground truth label fn and which satisfies L(fn, fn) = 0.

We use a standard cutting plane approach [4] to optimize the param-
eters w by repeatedly performing loss-augmented inference to find flows
f̂ that violate the constraint for each training example. Specifically, we
propose to use a decomposable loss L for transition links that attempts to
capture important aspects of multi-object tracking accuracy (MOTA) by
taking into account the length and localization of transition links rather
than using a constant (Hamming) loss on mislabled links.

Implementation details of approximate algorithms as well as the def-
inition of tracking features and loss can be found in our full paper. Sur-
prisingly, we found that with properly learned parameters, even the simple
min-cost flow objective (1) yields better results than state-of-the-art meth-
ods on challenging MOT and KITTI benchmarks, while the quadratic
terms improves the performance even further for tracking with ordinary,
multi-category detector such as DPM [3].
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