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Abstract

We present a novel, parameterization-invariant method for shape analysis of anno-
tated surfaces. While the method can handle various types of annotation including color
and texture, in this paper we focus on soft landmark annotations. Landmark annotations
are commonly provided in various applications including medical imaging where an ex-
pert marks points of interest on the objects. Most methods in current literature either
study shapes using landmarks only or surfaces only. In either case, the analyst is forced
to ignore a lot of useful information. We propose a novel representation of surfaces that
can jointly incorporate shape and landmark annotation. Our framework properly removes
all shape preserving transformations from the representation space including translation,
scale, rotation and re-parameterization. We present results of comparing, averaging and
classifying annotated shapes on toy and real data.

1 Introduction

Shape is a fundamental property of an object and statistical analysis of shapes plays an impor-
tant role in many applications including handwriting analysis, medical imaging, biometrics,
bioinformatics, and many more. Statistical shape analysis was pioneered by D.G. Kendall
[15] and Dryden and Mardia [9]. They represented continuous objects (curves, surfaces, etc.)
using a finite set of points called landmarks and defined shape as being invariant to rigid mo-
tion and scaling. Landmark points are usually chosen by an expert with in-depth knowledge
in the application area of interest (anatomical landmarks), and are important in interpreting
the subsequent results. However, a major limitation of Kendall’s shape analysis is that once
the landmarks are chosen the rest of the continuous information is discarded. This results in
a large loss of information, which can drastically affect the statistical analysis.

More recently, other representations of 3D objects for shape analysis have become very
popular, and many of them have been motivated by medical applications. Studying shapes
of 3D anatomical structures is a promising approach to medical diagnosis and monitoring,
because many diseases are linked to alterations of these shapes even before physiological
symptoms are present. Several groups have proposed to study shapes of surfaces by embed-
ding them in volumes and deforming these volumes (deformable templates) under the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework [6, 7, 11, 14, 25]. A
closely related approach utilizes inner metrics to describe shape deformations, which are
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prescribed directly on the surface [2]. Other groups study 3D shapes using level sets [23],
curvature flows [12], the iterative closest point (ICP) algorithm [1] or the medial axis [3, 10].
The representation of 3D objects by their boundaries, which form parameterized surfaces,
also provides a natural framework for statistical shape analysis. Such a representation poses
an additional issue of handling the parameterization variability inherent in this type of data.
Re-parameterization is the process of determining the correspondence between two or mul-
tiple surfaces, and provides information about which point on one surface matches which
point on another surface. Some methods [4, 24] tackle the problem of re-parameterization
by standardization, similar to arc-length in the case of parameterized curves. As was shown
in several papers in the case of both curves and surfaces, this type of analysis tends to be very
limiting in practice and provides nonintuitive correspondences. A different set of papers treat
the re-parameterization step as pre-processing [5, 8]. Once registered, the subsequent statis-
tical analysis of surfaces is performed using standard tools. Because the two steps in these
approaches are unrelated, the computed parameterizations tend to be suboptimal, and defin-
ing proper parameterization-invariant statistics is not possible. In a series of papers, Kurtek
et al. [18, 19, 20, 21] presented a comprehensive framework for parameterization-invariant
shape modeling of surfaces based on the q-map representation. Later, Jermyn et al. [13]
used a different representation of surfaces termed square-root normal fields (SRNFs) for the
same purpose, which was based on an elastic Riemannian metric. This method was success-
fully applied to study shapes of endometrial tissues and cropped faces [16, 17]. The last two
approaches overcome the issue of re-parameterization and result in natural shape models.

In many applications such as handwriting analysis and medical imaging, in addition to
the continuous surface information, one is often provided with a set of landmark points that
have been chosen by an expert. Most of the methods listed in the previous paragraph cannot
naturally incorporate this information into the shape analysis framework, and thus ignore this
additional information. One exception is recent work of Kurtek et al. [22] where they study
surface registration and deformation under few hard landmark constraints. Unfortunately,
the assumption of no uncertainty in the landmark placement is very limiting in most appli-
cations. It is clear that even an expert practitioner has some level of variability in his or her
landmark placement. The current paper extends upon the q-map method of Kurtek et al. [18]
by defining an extended q-map representation of surfaces, which can incorporate additional
annotation in the shape analysis framework. While the annotation component can be quite
general including color or texture, the current paper studies Gaussian soft landmark annota-
tions and curvature annotations. A curvature annotation can be viewed as an automatic soft
landmarking process. We provide results on toy surfaces of revolution and MNIST handwrit-
ten digits (represented as graph surfaces) where the gains provided by including landmark
annotations are clear. We also study classification of the digits and Attention Deficit Hyper-
activity Disorder (ADHD), where the proposed methods give improved performance over
methods in current literature that consider the continuous surface information only. Thus,
our main contributions are: 1. We define a new representation of annotated surfaces termed
the extended q-map and define a proper distance between annotated shapes. 2. We introduce
Gaussian soft landmarks that naturally incorporate uncertainty in landmark placement in the
shape analysis framework. 3. We introduce automatic soft landmarks via the mean curva-
ture. 4. We define an approximate averaging algorithm for annotated shapes. 5. We present
classification results on the MNIST handwritten digits and ADHD medical data. The rest of
this paper is organized as follows. Section 2 presents the mathematical framework; Section
3 gives comparison, averaging and classification results for the two types of soft landmark
annotations. We close with a brief summary in Section 4.
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2 Mathematical Framework

We present a Riemannian framework for analyzing shapes of annotated, parameterized sur-
faces. Previous research on parameterization-invariant shape analysis of surfaces has shown
that the commonly used L2 metric has important theoretical shortcomings. The main issue
is that the action of the re-parameterization group on the space of surfaces is not by isome-
tries. We explain this further next, by considering the case of annotated surfaces, which
is the focus of the current paper. Let S denote a 2D smooth parameterized surface with
genus zero, where D is the domain of the surface. In this paper, we are interested in two
such domains: unit square D = [0,1]2 for quadrilateral surfaces and unit sphere D = S2 for
closed (spherical) surfaces. The geometric structure of a surface S can be represented as
a smooth embedding of D in R3 denoted by a map f s : D ! R3. The annotation can be
represented by a similar map denoted by f t : D ! R. Note that, in this work, we only
consider 1D functional annotations, but the general framework applies to nD functional
annotations, n � 1. To study the geometric structure and annotation jointly, the two com-
ponents are combined into an annotated surface function f (s) = ( f s(s) l f t(s))T 2 R4,
where s = (u,v) 2 D and the parameter l � 0 is introduced to control the relative impor-
tance of the annotation. When l is small, the target function and statistical analysis puts
more weight on the structure component. On the other hand, when l is large, the analysis
focuses more on the annotation. The set of all annotated surfaces forms a function space
denoted by F = { f : D ! R4| f is smooth}. Let G be the set of all re-parameterizations of
the surface domain, G = {g : D ! D|g is an orientation-preserving diffeomorphism}. Then,
the natural action of G on F is by composition, i.e. for an annotated surface f 2 F and
a re-parameterization function g 2 G, the re-parameterized annotated surface is given by
( f ,g) = f � g . It is easy to show that the action of the re-parameterization group on the
space of surfaces is not by isometries ( f1, f2 2 F , g 2 G), k f1 � f2k 6= k( f1,g)� ( f2,g)k,
making the L2 metric inappropriate to use in this context. In fact, equality only holds for re-
parameterizations g that are volume-preserving (the determinant of the Jacobian of g is 1 at
all points), which is very limiting in practice. The proposed framework extends the approach
of Kurtek et al. [18] by introducing a generalization of the q-map representation of surfaces
that allows comparison of annotated shapes using the L2 metric. We present the details next.

In order to study shapes of annotated surfaces, we introduce a novel representation called
the extended q-map (EQM).

Definition 2.1 Define the extended q-map (EQM) using a mapping Q : F ! L2 as Q( f ) =
q(s) =

p
|a(s)| f (s), where a(s) = ∂

∂u f (s)^ ∂
∂v f (s), and | · | is the Euclidean norm in R6.

The wedge product ^ is a generalization of the cross product to four dimensional vectors,
and its norm calculates the directed volume of an area generated by the two vectors. Note
that the original q-map of Kurtek et al. [18] was defined for surfaces in R3 only using the
cross product. Any annotated structure f 2 F can be represented by its EQM q. Since
f is assumed to be smooth, the space of all EQMs is a subset of L2(D,R4), henceforth
simply denoted by L2. Given a re-parameterization g 2 G, the EQM of the re-parameterized
annotated surface f � g is given by (q,g) =

p
Jg(q � g), where Jg is the determinant of the

Jacobian of g . Since the space of EQMs is a subset of L2, we equip it with the natural L2

metric to set up a Riemmanian framework. The resulting L2 distance between any two EQMs
q1,q2 2 L2 is kq1 �q2k =

�R
D |q1(s)�q2(s)|2ds

� 1
2 , where | · | is the Euclidean norm in R4,

and the geodesic path connecting the EQMs is a straight line. Under this framework, the re-
parameterization group G acts on the space of EQMs by isometries. That is, for any q1,q2 2
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L2 and g 2 G, kq1 � q2k = k(q1,g)� (q2,g)k. This allows us to define a parameterization-
invariant framework for shape analysis of annotated surfaces.
Comparison of Annotated Shapes. One must take extra care in accounting for shape pre-
serving transformations of annotated surfaces. In particular, it is important to identify the
invariances for each of the two components (structure and annotation) separately and remove
them appropriately from the representation space. Shapes of parameterized surfaces are in-
variant to rigid motion (translation and rotation), scaling, and re-parameterization. Shape
analysis can be made invariant to translation and global scaling by normalizing. Invari-
ances to rotation and re-parameterization are dealt with using group actions and equivalence
classes. Changing the translation and rotation of the annotation is inappropriate. Thus, the
only two invariances we impose on this component are scaling and re-parameterization.

Translation does not change the shape of an object, but it does alter the annotation. Thus,
we remove translation variability in the structural component only. The center of mass
of the surface can be calculated as ṽ =

R
D f s(s)|as(s)|dsR

D |as(s)|ds , where as(s) = ∂
∂u f s(s)⇥ ∂

∂v f s(s),
and | · | is the Euclidean norm in R3. The centered annotated surface becomes f (s) =
( f s(s) l f t(s))T � (ṽ 0)T . We remove the scaling variability, in both the structure and
annotation, by normalizing the annotated surface to have unit "volume". The re-scaled an-
notated surface is f (s) = f (s)pR

D |a(s)|ds
. This step re-scales both components using the same

constant. If different re-scalings are desired in the analysis, this can be controlled using the
parameter l . The centered and re-scaled annotated surfaces form the pre-annotated-shape

space C. The corresponding EQM pre-annotated-shape space is denoted by Cq.
Although rotation does not change the shape of an object, it does change the anno-

tation. Thus, it is desirable to remove the variation due to rotation in the shape compo-
nent only. To achieve this we define a subgroup of the rotation group SO(4) according to

R =

✓
SO(3) 0

0 1

◆
⇢ SO(4). For any f 2 C and O 2 R, R acts on C according to (O, f ) = O f .

This action is the same on the pre-annotation-shape space of EQMs ((O,q) = Oq). It is
easy to show that the rotation group R acts on Cq by isometries under the L2 metric. Re-
parameterization changes the mathematical representation of a surface by deforming its co-
ordinate system. However, it preserves the shape and annotation information, and thus, we
seek invariance to such transformations for both components. The re-parameterization group
G acts on C and Cq as stated previously. It follows from the definitions of the rotation and re-
parameterization groups that their actions on C and Cq commute, which enables us to define
an action of the product group R⇥G. To unify all elements of Cq that are within a rotation
and/or re-parameterization of each other, we define an equivalence class of an EQM accord-
ing to [q] = {O(q,g)|O 2 R, g 2 G}. Each equivalence class [q] is associated with a unique
annotated shape and vice versa. The set of all such equivalence classes Sq = {[q]|q 2 Cq} is
the quotient space Sq = Cq/(R⇥G), and is referred to as the annotated-shape space.

A fundamental goal of shape analysis is to quantify differences between shapes. Since
both rotation and re-parameterization act on Cq by isometries under the L2 metric, we can
define a distance between any two annotated shapes as a distance between their EQM equiv-
alence classes, i.e. d([q1], [q2]) = minO2R, g2G kq1 � (Oq2,g)k. The computation of this
distance requires jointly solving for the optimal rotation O⇤ and re-parameterization g⇤.
Searching for the optimal rotation is achieved by Procrustes analysis (singular value de-
composition). The search over G is very similar to the problem considered in [18, 20] and
we utilize their algorithm for this purpose. We refer the reader to their papers for details.
Approximate Averaging of Annotated Shapes. A fundamental goal of statistical shape
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analysis is to compute an average shape. This can be accomplished using the Karcher mean
in Sq as follows. Given a set of normalized annotated surfaces { f1, . . . , fn} 2 C represented
using their EQMs {q1, . . . ,qn} 2 Cq, the annotated shape Karcher mean is given by [q̄] =
argmin[q]2Sq Ân

i=1 d([q], [qi])2 (a gradient descent algorithm to compute it is presented in [9]).
The resulting average is an equivalence class of annotated surfaces, and thus, we select one
representative: q̄ 2 [q̄]. Unfortunately, in order to visualize the average annotated shape,
one must apply the inverse mapping Q�1 to q̄ to obtain the corresponding annotated surface.
But, this mapping is not easy to compute. Thus, instead of computing the exact average
annotated shape, we resort to an approximate algorithm, which does not require this step.
We outline the algorithm next. First, initialize with an approximate average annotated shape
by computing f̄0 =

1
n Ân

i=1 fi and normalizing it with respect to translation and scaling. Note
that we are now using the original surfaces rather than their EQMs. Also, compute the EQM
representations {qi} of { fi} for i = 1, . . . ,n, and the EQM q̄0 of f̄0. Then, iteration j of
the algorithm proceeds as follows. First, find the optimal rotation and re-parameterization of
each qi with respect to the current estimate of the average annotated shape q̄ j using (O⇤

i ,g⇤i )=
argminO2R, g2G kq̄ j � (Oqi,g)k. Apply these transformations to each of the corresponding
surfaces, f ⇤i = O⇤

i ( fi � g⇤i ), and compute the perturbation update using w̄ = 1
n Ân

i=1( f ⇤i � f̄ j).
Then, update the current estimate of the average annotated shape using f̄ j+1 = f̄ j+e v̄, where
e > 0 is a small step size. Repeat this procedure until convergence and at the last step,
normalize the final average annotated shape with respect to translation and scaling.

3 Experimental Results Using EQMs

In this section, we present experimental results of comparing and averaging annotated shapes
with two different types of annotation. The first type considers the inclusion of soft landmark
constraints into shape analysis of surfaces. The term "soft landmark" refers to a point of in-
terest with small additional uncertainty in its placement on the surface. The main drawback
of the soft landmark annotation is that it is determined manually, thus requiring a lot of the
expert’s time and resources. Thus, as a second type of annotation, we consider the mean cur-
vature of the surface. We choose to work with the mean curvature rather than the Gaussian
curvature due to its lower susceptibility to noise. A curvature annotation can be viewed as an
automatic soft landmarking process where points with high and low curvature are forced into
correspondence (mathematical landmarks). We present results on toy surfaces of revolution,
images of handwritten digits from the MNIST database viewed as graph surfaces, and sub-
cortical structures for classification of Attention Deficit Hyperactivity Disorder (ADHD).
We assess the matching/comparison results by displaying the linear interpolation path be-
tween the two registered surfaces: F(t) = (1� t) f1 + t(O⇤( f2 � g⇤)),0  t  1. The quality
of annotated shape comparisons is closely related to the nature of the linear interpolation.
Soft Landmark Annotation. We represent the soft landmark annotation as a mixture of
equally weighted bivariate Gaussian distributions centered at the landmark locations with
uncertainty contained in the covariance. A soft landmark annotation ensures not only the
matching of the overall geometric information of the surfaces, but also forces correspon-
dence between the selected points. Let s1, s2, ..., sk 2 D denote the coordinates of the se-
lected landmark points. For each provided landmark, we place a bivariate Gaussian distribu-
tion centered at the landmark location. Thus, for si 2 D, f t

i (s) =
1

2p
p

|S|
e�

1
2 (s�si)

T S�1(s�si),

{Dryden and Mardia} 1998
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(a) Isotropic Annotation (b) Anisotropic Annotation

(c) Isotropic Annotation
Linear interpolation g⇤

l = 0 (shape only)

l = 1

l = 2
(d) Anisotropic Annotation

l = 1

l = 2
Figure 1: Isotropic (a) and anisotropic (b) Gaussian landmark annotations of two graph
surfaces of the digit ‘4’. Linear interpolation between the two annotated shapes and the
optimal re-parameterizations g⇤ of the target surface for isotropic (c) and anisotropic (d)
Gaussian landmark annotations (the source image is on the leftmost and the target image is
on the rightmost). Note: when l = 0 the deformation is the same for both cases.

where S =

✓
s 2

1 s12
s12 s2

2

◆
is the covariance matrix, and |S| is its determinant. The confidence

parameters s1 and s2 control the coverage of the soft landmarks, while the parameter s12
controls the orientation. A smaller s1/s2 decreases the coverage of the soft landmarks, and
thus, restricts the matching to a smaller neighborhood around the landmark point. The pa-
rameter l controls the overall importance of the soft landmarks in the comparison. The full
annotation is defined as an equally weighted mixture of the k Gaussians: f t = 1

k Âk
i=1 f t

i .
Figure 1 shows two graph surfaces of the digit ‘4’. In panel (a), we annotated the two sur-

faces using five isotropic Gaussian landmarks reflecting equal uncertainty in their placement
in all directions. In panel (b), we annotated the same two surfaces using five anisotropic
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Gaussian landmarks centered at the same locations but with greater uncertainty along the
handwritten strokes (this type of annotation is much more intuitive). The annotations are
displayed on the digits using ellipses. The main difference between these two digits lies in
the ending point of the ‘L’ shaped stroke. It crosses over the straight stroke on the first digit,
and ends exactly on the straight stroke on the second digit. This type of variation reflects
natural differences in writing styles and must be accounted for in the analysis. Figure 1(c)
shows the comparison results for the two digits when using the isotropic Gaussian annota-
tion with a fixed s1 = s2 = 0.05 and l = 0, 1, 2. Note that when l = 0, only the structural
component is used for comparison. In this case, the part of the ‘L’ shaped stroke that crosses
over the straight stroke on the first digit fades away during the deformation. This is not a
natural deformation between the two digits. In particular, one would expect the additional
part of the ‘L’ shaped stroke to contract toward the straight stroke. When we increase l to
1 or 2, the soft landmark annotation starts playing a role and we see a different behavior.
The additional part of the ‘L’ shaped stroke begins to shrink toward the cross point, but the
folding motion toward the straight stroke is not very natural. Thus, we try to improve this
result using anisotropic Gaussian soft landmarks. These results are presented in panel (d)
for l = 1, 2. In both cases, we see a much improved deformation. By changing the struc-
ture of the landmark uncertainty we are able to generate a natural deformation between the
two digits where the extra part of the ‘L’ shaped stroke nicely contracts toward the straight
stroke. This is the type of handwriting variation that is expected. Figure 2 displays deforma-
tion results for two graph surfaces of a digit ‘6’. Both surfaces were annotated with isotropic
soft landmarks (we do not display the annotation for brevity). This case is challenging due
to the missing part along the loop of the second digit. We display the comparison results
for s1 = s2 = 0.05 and l = 0, 1, 3. Again, when no soft landmark annotation is used the
missing part uniformly appears along the path. A more natural deformation would involve
the left part of the loop on the second digit to wrap around and close the right part of the
loop. As we increase the parameter l , we in fact observe such a deformation. Thus, the soft
landmarks play an important role in the matching and comparison of digit graph surfaces.

As a final experiment involving soft landmark annotations, we performed a small clas-
sification experiment on a subset of 100 handwritten digit graph surfaces (10 examples of
each digit) from the MNIST database. Performance was measured using leave-one-out near-
est neighbor classification based on the annotated shape distance. The digit surfaces were
annotated using isotropic landmarks and the results were computed for varying values of l .
The results are presented in Table 1. The final column presents the result of a state-of-the-art
method for shape analysis of surfaces (without annotation). Note that when l = 0.75, giving
some influence to the soft landmark annotation, the classification accuracy increases from
81% (when l = 0) to 99%. The method of Jermyn et al. [13] achieves a 91% classification
rate. Thus, the proposed method outperforms the state-of-the-art in this classification exper-
iment. While in this evaluation we computed the classification result for various types of l ,
one can learn an optimal value of this parameter through cross-validation.
Curvature Annotation. The curvature of a surface can be used as an automatic landmarking
procedure where areas of high curvature (in absolute value) are forced to match. Figure 3
presents three comparison results for surfaces of revolution with a mean curvature annota-
tion. In each example, we display the deformation between the two surfaces when l = 0 and
with l > 0 where the annotation plays a significant role. In all examples, we notice a striking
improvement in the matching/comparison achieved by including the curvature annotation.

We also report preliminary classification results for an ADHD study. In this data there
was a total of 34 subjects with 19 patients and 15 controls. This dataset was previously

{Jermyn, Kurtek, Klassen, and Srivastava} 2012
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l = 0

l = 1

l = 3
Figure 2: Linear interpolation between two ‘6’ digits with an isotropic Gaussian annotation.
The source image is on the leftmost and the target image is on the rightmost.

l 0 0.25 0.5 0.75 1 1.25 1.5 [13]
CR (%) 81 92 98 99 97 94 92 91

Table 1: Leave-one-out nearest neighbor classification rate (CR) for the proposed method
with varying values of l and the method in [13].

l = 0 Example 1 l = 0.05

l = 0 Example 2 l = 0.05

l = 0 Example 3 l = 0.04

Figure 3: Three examples of deformations between surfaces of revolution with a mean cur-
vature annotation. In each case, we compare the shape only deformation (l = 0, left) to the
annotated shape deformation (l > 0, right).

analyzed in [19, 20]; please refer to those papers for a detailed description. In this paper, we
study the performance of the proposed framework by computing the leave-one-out nearest
neighbor classification rate based on three different subcortical structures annotated using
their curvature (Figure 4) for varying values of l . The results are presented in Table 2. It
is evident from the results that including the curvature annotation in this problem can yield
improved classification performance over the shape only case [18]. For example, in the case
of the left caudate, when l is increased to 0.25, the ADHD classification accuracy improves

{Jermyn, Kurtek, Klassen, and Srivastava} 2012
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Left Caudate Left Putamen Left Thalamus

Figure 4: Structures used for ADHD classification. In each panel, we show the structural
component (left), the curvature on a unit sphere (middle) and the annotated surface (right).

Classification Rate (%)
Structure \ l 0 [18] 0.25 0.5 0.75 1 1.5 2
L. Putamen 82.4 79.4 79.4 82.4 85.3 82.4 70.6
L. Caudate 47.1 55.9 52.9 55.9 52.9 44.1 47.1

L. Thalumus 61.8 64.7 61.8 55.9 58.8 50.0 47.1
Table 2: ADHD classification using three left subcortical structures.

Sample of Annotated Surfaces l = 0 l = 0.5 l = 1

Sample of Annotated Surfaces l = 0 l = 0.1 l = 0.5

Figure 5: Averaging results for three handwritten digits with Gaussian soft landmark anno-
tation (top) and four surfaces of revolution with a curvature annotation (bottom).

by almost 10%. In future work, we plan to explore this problem in more depth by considering
other subcortical structures and even ensembles of multiple structures.
Averaging of Annotated Shapes. The final set of results shown in Figure 5 considers aver-
aging of annotated shapes using the algorithm outlined in Section 2. In the first example, we
consider three graph surfaces of the digit ’4’ annotated using isotropic Gaussian landmarks.
When the annotation is included in the analysis, the average shapes preserve more geometric
features from the given data. In the second example, we consider four curvature annotated
surfaces of revolution with different numbers of peaks and valleys. Here, as l increases, the
average shape contains fewer peaks and becomes smoother.

4 Summary

We defined a Riemannian framework for shape analysis of annotated surfaces. We repre-
sent the annotated surface using an extended q-map transformation to compare and average
shapes in the presence of soft landmarks. We have applied this framework to classification of
handwritten digits and ADHD, and have shown improved performance over previous meth-
ods. In future work, we would like to consider other types of annotation including color and
texture. We would also like to study variability in annotated shapes using principal compo-
nent analysis and utilize Gaussian likelihoods for improved classification.

{Kurtek, Klassen, Ding, and Srivastava} 2010
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