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Abstract

Depth imaging is applied to characterize the shoot of seedlings from top-view. We
demonstrate how quantitative informations of biological interest, such as leaves counting
can be extracted from such images without performing 3D reconstruction of the shoot.
This is obtained from 2D Fourier multiscale analysis without any requirement to segment
nor detect leaves one by one numerically. We discuss the robustness and limitations of
this approach and present possible extension with 3D Fourier analysis applied to estimate
the plant plastochrone or 3D+T Fourier analysis in the estimation of circadian rythms.

1 Introduction
Counting leaves of seedlings from top view is an important task for plant phenotyping. From
a biological point of view, the number of leaves is a key marker of the growth stage of the
plant. For technological concerns, the top view acquisition setup when coupled to convey-
ors of plants or camera allow the access to high throughput non invasive screening of large
population of plants required in plant phenotyping. Counting leaves of seedlings from top
view also constitutes a challenge for computer vision since the shoots of plants are, in gen-
eral, rather homogeneous in color and leaves are poorly contrasted with each others with
standard RGB or gray level luminance cameras. In monoaxial plants like seedlings, leaves
are positioned sequentially along the main axis, with different heights and orientations. This
disposition creates a strong spatial contrast between each leaves along the main axis of the
seedling. 3D laser scanners or X-ray tomographs make it possible to record a full 3D ac-
quisition and reconstruction of entire plants. However, when applied to large populations
of plants, full 3D acquisitions can be time expensive for high-throughput phenotyping and
will also produce huge amounts of data. In some biological contexts, full reconstruction of
entire plants may not be necessary to characterize specific aspects of the morphology such
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as the sole counting of the number of leaves [5]. In such cases, depth cameras have recently
been shown to be useful tools (see [7] for a recent review). Depth cameras produce 3D point
clouds or depth maps where each pixel has an intensity proportional to the distance between
the shoot of the plant and the camera. Depth cameras have been demonstrated to be useful
for leaf segmentation, leaf orientation and canopy characterization.

In this report, we demonstrate that the counting of the leaves on seedlings can be obtained
without having to perform the segmentation and recognition of each individual leaf. This is
obtained with a supervised classification based on multiscale frequency analysis computed
on depth images of seedlings from one single top view.

2 Multiscale frequency analysis

A classical approach to characterize the spatial frequency content of an image I(x,y) con-
sists in computing F(I(x,y)), its Fourier transform, followed by its power spectrum P =
|F(I(x,y))|2, which is averaged along all the angular directions in a polar diagram, to pro-
duce a function of the spatial frequency f called average power spectrum

DSP( f ) =
1

2π

∫ 2π

0
P( f exp(iθ))dθ . (1)

A common signature of such analysis applied to natural landscapes with plants is scale-
free power-law evolutions present in the frequency spectrum of luminance images [16, 17].
Such power-law evolutions can be identified on a log-log graph when the average power
spectrum follows a line over a large range of spatial frequencies. This corresponds to a
power spectrum DSP( f ) ∼ f α governed by a constant slope α across the frequency scales.
Self-similarity accross scales, i.e. fractal features, has been reported in various properties
of images from plants. The colorimetric organization of natural landscapes with plants also
demonstrates self-similarity and fractal properties [2, 3, 4] with other metrics based on the
3D RGB histogram. More recently, multiscale analysis has been undertaken for plant images
obtained from another imaging technique delivering depth images of a physical scene [6].
The depth map images from outdoor scenes of woods and plants as in [16, 17] with the
DSP( f ) of Eq. (1) were shown in [6] to also reveal self-similarity and fractal properties.

The interest of such multiscale image analyses revealing and characterizing fractal prop-
erties in plants are usually argued (see [15] for a recent review), as important to contribute to
the understanding of statistical properties of outdoor natural scenes since they have formed
for a long period of time the environment in which the visual system has evolved and devel-
oped. From a biological point of view, the multiscale organization of plants which leads to
high surface areas at the interfaces with the environment, ensuring for the plant efficient cap-
ture of nutrients and energy has a direct impact on their functioning, for instance for efficient
interactions with their environment [8, 12, 18]. Also, fractal characterization of plants is use-
ful to devise synthetic models of plants with sufficient realism[14]. This is specially the case
with the so-called dead leaves model which takes inspiration from the foliage of plants, with
leaves of different sizes and illumination which are reproduced at various scales with occlu-
sions [9, 11]. In this report, we will not explore these rather fundamental approaches in plant
sciences and we focus on the demonstration of the practical interest of Fourier multiscale
analysis for the informational task of leaf counting.
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3 Depth images of seedlings from top view
The type of plants used for the experiments carried in this report are tomato seedlings chosen
at various stages of development classified as a function of the number of leaves accessible
from top view starting with two up till six leaves. A set of depth images from top view
of some of these different stages of development is given in Fig. 1. The depth images of
Fig.1 were generated from 3D full reconstruction of the seedlings. Shortly, we used a multi-
camera setup designed for high-throughput phenotyping of seedlings of Fig. 2 and described
in [13, 20]. The seedling is surrounded by different cameras, observing the object from
different perspectives. The system can deal with a variable number of cameras. The quality
of the 3D reconstruction generally improves with the number of cameras. However, as the
gain in quality gets smaller with higher number of cameras and the memory load on the
computer increases linearly with the number of cameras, a trade-off between accuracy and
efficiency needs to be made. In our experiments, we used 10 cameras as an optimum of the
trade-off. The silhouettes of the seedling in the acquired camera images (Fig 2b) are used to
reconstruct, with the so-called MARVIN system [13, 20], the object in 3D through a shape-
from-silhouette method (Fig. 2c). The tomato seedlings chosen in our experiment mostly
grow along a vertical axis and leaves are almost positioned horizontaly, i.e. perpendicularly
to the vertical axis. The top view depth image generated from the 3D reconstruction of the
seedlings is taken along this vertical axis, i.e. the main stem, and the grey levels correspond
to the vertical coordinates of each pixels with a millimeter resolution, zero being the ground.
The resulting depth images could also be acquired directly with depth imaging systems. In
our case the 3D reconstruction simply serves as ground truth to visually count the leaves. The
tomato seedling corresponds to a phenotyping computer vision scene where a single top view
image already captures a lot of information on the shoot of the plant specially concerning
the counting of the number of leaves as demonstrated in this report.

Figure 1: An overview of 3D-reconstruction and segmentation pipeline. a) The plant is
observed by multiple cameras (10 used in the experiments). b) Each camera provides an
image from which the silhouette of the plant is determined. c) Using a shape-from-silhouette
method, the 3D shape of the plant is reconstructed.

4 Counting leaves algorithm
The basic idea of the proposed counting leaves algorithm results from the observation of
Fig. 3 where the multiscale frequency analysis of Eq. (1) is performed on the top view depth
images of tomato seedlings with 2, 3, 4, 5, 6 leaves. As the number of leaves increases, the
fit of the averaged power spectrum DSP( f ) to a power-law progressively increases. This is
visible in Fig. 3 where in the column corresponding to seedlings with 2 leaves the fit is almost
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2 leaves 3 leaves 4 leaves 

Figure 2: Depth maps from top view of tomato seedlings with 2 leaves (first column), 3
leaves (second column), 4 leaves (third column).

never on the experimental points while for 3 leaves the fit is on the experimental on the range
log( f ) between 1000 and 100 and for 4 leaves on the range between 1000 and 50. This trend
is not surprising since for a large number of leaves a pure power-law has been demonstrated
theoretically in the so-called dead leaves model [9, 11]. We therefore propose a two steps
process. First, in a supervised step, the multiscale frequency analysis of Eq. (1) is performed
on a set of seedlings of known number of leaves. A linear fit is realized on log(DSP( f )) and
the standard deviation between the fit and the experimental data is computed. We choose
not to include frequency 0 in the fit since it includes information on the size of the surface
captured by the depth image and we want to focus on shape. The standard deviation of the fit
is then averaged for 10 seedlings of known number of leaves. The values are given in Table
1 where the standard deviation values are clearly distinct. Then, in a second step, this table is
used as calibration reference. For a depth image of a tomato seedling with unkown number
of leaves (in the range 2 to 6 leaves), the same standard deviation coefficient is computed
and the number of leaves is associated to the corresponding closests standard deviation of
reference in Table 1. This procedure has been tested on 50 tomato seedlings (10 for each
number of leaves in the range 2 to 6 leaves) and the results are given in Table 2. With this
approach, the number of leaves are estimated without having to segment each individual
leaves, simply by quantifying the distribution of the spatial frequencies in the depth images
in the way they depart from a power-law signature.
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Figure 3: Averaged power spectrum DSP( f ) of Eq. (1) computed on the depth images of
Fig. 2. The red solid line is the linear fit on a loglog scale of DSP( f ).

5 Discussions

We now discuss the robustness and limitations of the counting leaves algorithm presented in
the previous section. We tested our counting algorithm on plant of the same species at the
same stages of development but under environmental conditions which make larger leaves.
The results of the counting are excellent (100 % like in Table 1 for smaller leaves with 2,
3 and 4 leaves). To explain this, let us note that seedlings of the same species display the
same shape at a given stage of development. A global homothetical change of the size of
the plant preserving its shape only modifies the value of DSP( f ) at f = 0 (not included for
this purpose in the analysis) but gives the same evolution of the DSP( f ). This robustness
toward the size of the seedling is not surprising since, the counting score is based on the
deviation from a power-law which is not sensitive to DSP(0). We also tested our counting
algorithm on plant of different species at the same stages of development. The counting
algorithm would be expected to work if the species had the same shape of leaves. But it will
not suprisingly fail to count leaves correctly if the leaves have very different shapes from the
plant taken as reference. To illustrate this, we picked images of Arabidopsis Thaliana from
the CVPPP challenge (http://www.plant-phenotyping.org/CVPPP2014-challenge). Leaves
of Arabidopsis Thaliana are much more circular than leaves of the tomato seedlings. Our
algorithm failed to count the number of leaves on this data set. The reason is given in Fig.
4. With leaves modeled as ellipses with small eccentricity (less than 0.9) the deviation of the
average power spectrum from a power law is already very small for a single leaf. Therefore,
the smoothing due to the presence of new leaves is very small. As visible in Fig. 4, the
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Number of leaves average RMS
2 8.5
3 7.5
4 6.7
5 5.9
6 5.4

Table 1: Reference standard deviations between the averaged power spectrum DSP( f ) and
the linear fit associated to a number of leaves in the counting leaves algorithm. Each refer-
ence value is obtained from averaging the standard deviation on 10 seedlings of each class.

Number of leaves Number of good classifications
2 10 out of 10
3 10 out of 10
4 10 out of 10
5 9 out of 10
6 7 out of 10

Table 2: Test of the counting leaves algorithm realized on images of tomato seedlings similar
to Fig. 2 with 10 seedlings of each class of number of leaves in the range 2 to 6.

departure from a power-law is large for elongated leaves. Therefore our algorithm works
with elongated leaves such as the one displayed by tomato seedlings in Fig. 2, but will, not
surprisingly, fail to count almost circular leaves.

In Table 2, we count the elongated leaves of tomato seedlings correctly only from 2 to
5. As second discussion point, one could wonder why we start counting at 2. The first rea-
son is biological. The very first leaf which appears when the plant starts its photosynthetic
activity is in fact a couple of identical leaves called cotyledons. The second reason is that
since these two leaves are identical, they only differ by a translation and rotation. Conse-
quently, the averaged power spectrum of 1 cotyledon is equal to the average power spectrum
of 2 cotyledons. Therefore, the deviation from the power-law signature is not affected by the
exact replication of a leaf. Our counting algorithm works because when the new leaves ap-
pear, they have different sizes than the older leaves. Smaller, i.e. younger leaves will enrich
the averaged power spectrum in high spatial frequencies while larger, i.e. older, leaves will
relatively contribute to lower spatial frequencies. One could now wonder why our approach
fails to go further than counting up to 6. We applied our algorithm on a plant with 10 leaves
as illustrated in Fig. 5. At the stage of development of Fig. 5 some occlusions are present
from top view. These occlusions contribute to smooth the average power spectrum. Conse-
quently, as the number of leaves increases, the averaged power spectrum DSP( f ) tends to a
power-law. Therefore, the evolution of the standard deviation of the experimental data to a
power-law will tend to zero independently of the number of leaves for the regime of large
number of leaves as expected in the dead leaves fractal model [9, 11]. Our algorithm is thus
limited to counting small number of leaves as demonstrated in Table 2.

Citation
Citation
{Gousseau and Roueff} 2007

Citation
Citation
{Lee, Mumford, and Huang} 2001



CVPPP WORKSHOP: BMVC 2015 7

Figure 4: Averaged power spectrum DSP( f ) of Eq. (1) computed on ellipses with various
eccentricty taken as model of synthetic leaves. Left column, eccentricity of 0.9, middle 0.99
and right 0.999. The red solid line is the linear fit on a loglog scale of DSP( f ).

6 Conclusion and perspectives

We have introduced a supervised classification algorithm based on multiscale frequency anal-
ysis which is able to count elongated leaves from 2 to 6 at early stages of seedling develop-
ment imaged from top view with depth imaging. This corresponds to a rather limited number
of count available but the computer science interest of this approach is that it does not require
the segmentation of the shoot nor the actual detection of each individual leaf. Also from an
agronomical point of view, the 2 to 6 leaves corresponds to a 10 to 12 days of growth. This
corresponds to the stage used by all the breeders for quality assessment of seed batch and
breeding purposes to estimate the quality of a new variety. This makes our approach possibly
very useful for such industrial tests.

In this report we counted leaves from the average power spectrum computed along the
line and column of the depth images. We now shortly discuss the possibility to extract other
informations of biological interest with Fourier transform of top view images of mono-axial
plant with depth imaging. Leaves on young seedlings are positioned horizontaly. Because of
the regular replication at the basis of plant growth, these leaves are positionned at periodic
heights. Consequently, an average Fourier transform computed along the vertical axis of a
depth image can produce an estimation of the spatial frequency of replication of the leaves.
We tested this idea on the plant of Fig. 5 where a principal spatial frequency appears at
1 leaf every 4 cm. This is again interesting since this information is obtained without any
segmentation or leaf detection. Also, another dimension where a Fourier transform could be
used on depth images from top view is the estimation of diurnal leaf growth. This biological
process, produces oscillations of the leaves which can be estimated from computer vision
[19]. The most advanced techniques made available so far [1, 10] are based on luminance
imaging. Depth images give better contrasts and recording series of top view with depth
images would enable to sense the evolutions of the shape of the plant. Temporal Fourier
transform computed along pixels in the time series would carry information on these tempo-
ral evolutions again without the need to resort to individual segmentation or detection of the
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leaves.

Figure 5: Top view of a tomato seedling with 10 leaves (left), (middle) corresponding aver-
aged power spectrum DSP( f ) of Eq. (1) and (right) vertical power spectrum.
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