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1 Proof of Proposition 1

The optimization problem in the preliminary form is:

min
ααα ,W

n

∑
i=1

∥xi −XXXααα i∥2
2 +λ∥ααα i∥1 + γTr(αααLWαααT ) (1)

s.t. W = (A◦ |ααα |+AT ◦ |αααT |)/2 ααα ∈ S

where S := {ααα ∈ IRn×n|ααα ii = 0,1 ≤ i ≤ n}, λ > 0 is the weight controlling the sparsity of
the coefficients, and γ > 0 is the weight of the regularization term.

We reformulate 1) into the following optimization problem with simplified equality con-
straint:

min
ααα,W

n

∑
i=1

∥xi −XXXααα i∥2
2 +λ∥ααα i∥1 +Tr(αααLA◦|W|αααT ) (2)

s.t. W = ααα ααα ∈ S

Proposition 1 establishes the equivalence between the problem (2) and problem (1).

Proposition 1. The solution ααα∗ to the problem (2) is also the solution to the problem (1),
and vice versa.
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Proof. When W = ααα ,

Tr(αααLA◦|W|αααT ) =
1
2

n

∑
i=1

n

∑
j=1

Ai j|Wi j|∥ααα i −ααα j∥2
2

=
1
4

n

∑
i, j=1

Ai j|ααα i j|∥ααα i −ααα j∥2
2 +

1
4

n

∑
i, j=1

A ji|ααα ji|∥ααα j −ααα i∥2
2

=
1
2

n

∑
i, j=1

Ai j|ααα i j|+A ji|ααα ji|
2

∥ααα i −ααα j∥2
2

Therefore, the objective function of problem (2) equals to that of problem (1) with their W
determined by the corresponding equality constraints, so these two optimization problems
are equivalent to each other.

2 Solving the Optimization Problem (13) by ADMM

min
ααα i∈IRn

F(ααα i) =
1
2

ααα iT Piααα i +bT
i ααα i +λ∥ααα i∥1 (3)

s.t. ααα ii = 0

To solve (3) by ADMM, (3) is rewritten as below by introducing an auxiliary variable z

min
ααα i∈IRn

F(ααα i) =
1
2

ααα iT Piααα i +bi
T ααα i +λ∥z∥1 (4)

s.t. ααα i = z,zi = 0

Note that ααα i is now not involved in the ℓ1-norm. The advantage of ADMM for the lasso
problem is that it transforms the original problem into a sequence of subproblems where
closed-form solutions exist, and the lasso problem can be solved efficiently in an iterative
manner.

The augmented Lagrangian for the constrained convex optimization problem (4) is

Li(ααα i,z,y) =
1
2

ααα iT Piααα i +bi
T ααα i +λ∥z∥1 +yT (ααα i − z)+

µ
2
∥ααα i − z∥2

2 (5)

where y is the Lagrangian multiplier, µ is the penalty parameter which is a pre-set positive
constant. The ADMM iterations for the optimization of (4) are listed below, with k being the
iteration index:

• Update ααα i with fixed z and y:

(ααα i)(k) = min
ααα i

Li(ααα i,z(k−1),y(k−1)) (6)

and (6) has closed-form solution

(ααα i)(k) = (Pi +µIn)
−1(µz(k−1)−y(k−1)−bi) (7)
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• Update z with fixed ααα i and y:

z(k) = min
z

Li((ααα i)(k),z,y(k−1)) (8)

By soft thresholding,

z(k)t =

{
max{0, |µ(ααα i

t)
(k)+y(k−1)

t |−λ} · sign(µ(ααα i
t )
(k)+yk−1

t )
µ t ̸= i

0 t = i
(9)

where the subscript t indicates the t-th element of the vector.

• Update y:

y(k) = y(k−1)+µ((ααα i)(k)− z(k)) (10)

The ADMM iterates (7), (9) and (10) until both the primal residual ∥(ααα i)(k) − z(k)∥2 and
the dual residual µ∥z(k+1) − z(k)∥2 are smaller than a threshold or the iteration number k
achieves the pre-set maximum number. It has been proved that ADMM iterations converge
to the optimal solution to the convex optimization problem (4) [1].

3 Time Complexity for Solving the Optimization Problem
(7) by ADMM

Based on the previous section and the algorithm description in the paper, the subproblem
(12) accounts for the most of the time complexity. Suppose the maximum iteration number
of ADMM is N1, and the maximum iteration number of the coordinate descent for solving
subproblem (12) is N2. In our implementation, we store the matrix inversion result in equa-
tion (7), and the time complexity for computing the inversion of a n×n matrix is n2.376 by the
CoppersmithĺCWinograd algorithm, the overall time complexity for solving the optimization
Problem (7) by ADMM is O(N1n2.376 +N1N2n2).

4 Supplementary Clustering Results
Figure 1 shows several examples from the ORL face database.

Figure 1: Example images of the ORL face database

We also examine the changes of the clustering performance on Yale face database with
respect to γ and K, and illustrate the result in Figure 2 and Figure 3 respectively.
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Figure 2: Clustering performance with different values of K, i.e. the number of nearest
neighbors, on Yale face database when γ = 0.5. Left: Accuracy; Right: NMI
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Figure 3: Clustering performance with different values of γ , i.e. the weight of the regular-
ization term, on Yale face database when K = 5. Left: Accuracy; Right: NMI

5 Empirical Convergence
We show the convergence curve of ADMM for ORL face database and Yale face database in
Figure 4.
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−3 Convergence Curve of ADMM for ORL Face Database 
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−3 Convergence Curve of ADMM for Yale Face Database 
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Figure 4: Convergence curves of ADMM for ORL (Left) and Yale (Right) face database,
d1 = ∥W−ααα∥F , d2 = ∥ααα(k)−ααα(k−1)∥F .
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